Free Q-algebras

被引:11
作者
Pan, Fang-Fang [1 ]
Han, Sheng-Wei [2 ]
机构
[1] Xian Univ Posts & Telecommun, Dept Math, Xian 710121, Peoples R China
[2] Shaanxi Normal Univ, Dept Math, Xian 710062, Peoples R China
基金
中国国家自然科学基金;
关键词
Ordered semigroup; Quantale; Q-module; Q-algebra; Q-fuzzy subset; RESIDUATED LATTICES; LINEAR LOGIC; QUANTALES; QUANTIZATION; CATEGORIES; SPACES;
D O I
10.1016/j.fss.2014.01.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The main purpose of this paper is to consider some methods for constructing Q-algebras and to give the concrete form of a free (unital) Q-algebra over a set (a semigroup, an ordered semigroup). (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:138 / 150
页数:13
相关论文
共 35 条
[1]  
Abramsky S., 1993, Mathematical Structures in Computer Science, V3, P161, DOI 10.1017/S0960129500000189
[2]  
Adamek J., 1990, ABSTRACT CONCRETE CA
[3]  
ANDERSON F., 1992, Rings and Categories of Modules
[4]  
Birkhoff G., 1940, LATTICE THEORY AM MA
[5]   Non-commutative residuated lattices [J].
Dilworth, R. P. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1939, 46 (1-3) :426-444
[6]   LINEAR LOGIC [J].
GIRARD, JY .
THEORETICAL COMPUTER SCIENCE, 1987, 50 (01) :1-102
[7]   Q-fuzzy subsets on ordered semigroups [J].
Han, Sheng-Wei ;
Zhao, Bin .
FUZZY SETS AND SYSTEMS, 2013, 210 :102-116
[8]   Remark on the Unital Quantale Q[e] [J].
Han, Shengwei ;
Zhao, Bin .
APPLIED CATEGORICAL STRUCTURES, 2012, 20 (03) :239-250
[9]   A non-commutative and non-idempotent theory of quantale sets [J].
Hoehle, Ulrich ;
Kubiak, Tomasz .
FUZZY SETS AND SYSTEMS, 2011, 166 (01) :1-43
[10]   Approximation in quantale-enriched categories [J].
Hofmann, Dirk ;
Waszkiewicz, Pawel .
TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (08) :963-977