A review of radiomics and genomics applications in cancers: the way towards precision medicine

被引:54
作者
Li, Simin [1 ,2 ]
Zhou, Baosen [1 ,2 ]
机构
[1] China Med Univ, Hosp 1, Dept Clin Epidemiol, Shenyang 110001, Liaoning, Peoples R China
[2] China Med Univ, Hosp 1, Ctr Evidence Based Med, Shenyang 110001, Liaoning, Peoples R China
关键词
Radiomics; Genomics; Cancer; Machine learning; Evidence-based medicine; MICROVASCULAR INVASION; MOLECULAR-FEATURES; PREDICTION; RADIOGENOMICS; GLIOBLASTOMA; SURVIVAL; NOMOGRAM;
D O I
10.1186/s13014-022-02192-2
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The application of radiogenomics in oncology has great prospects in precision medicine. Radiogenomics combines large volumes of radiomic features from medical digital images, genetic data from high-throughput sequencing, and clinical-epidemiological data into mathematical modelling. The amalgamation of radiomics and genomics provides an approach to better study the molecular mechanism of tumour pathogenesis, as well as new evidence-supporting strategies to identify the characteristics of cancer patients, make clinical decisions by predicting prognosis, and improve the development of individualized treatment guidance. In this review, we summarized recent research on radiogenomics applications in solid cancers and presented the challenges impeding the adoption of radiomics in clinical practice. More standard guidelines are required to normalize radiomics into reproducible and convincible analyses and develop it as a mature field.
引用
收藏
页数:10
相关论文
共 71 条
[31]   Prediction of microvascular invasion in solitary hepatocellular carcinoma ≤ 5 cm based on computed tomography radiomics [J].
Liu, Peng ;
Tan, Xian-Zhen ;
Zhang, Ting ;
Gu, Qian-Biao ;
Mao, Xian-Hai ;
Li, Yan-Chun ;
He, Ya-Qiong .
WORLD JOURNAL OF GASTROENTEROLOGY, 2021, 27 (17) :2015-2024
[32]   Individualized Prediction of Colorectal Cancer Metastasis Using a Radiogenomics Approach [J].
Liu, Qin ;
Li, Jie ;
Xu, Lin ;
Wang, Jiasi ;
Zeng, Zhaoping ;
Fu, Jiangping ;
Huang, Xuan ;
Chu, Yanpeng ;
Wang, Jing ;
Zhang, Hong-Yu ;
Zeng, Fanxin .
FRONTIERS IN ONCOLOGY, 2021, 11
[33]   Uncontrolled Confounders May Lead to False or Overvalued Radiomics Signature: A Proof of Concept Using Survival Analysis in a Multicenter Cohort of Kidney Cancer [J].
Lu, Lin ;
Ahmed, Firas S. ;
Akin, Oguz ;
Luk, Lyndon ;
Guo, Xiaotao ;
Yang, Hao ;
Yoon, Jin ;
Hakimi, A. Aari ;
Schwartz, Lawrence H. ;
Zhao, Binsheng .
FRONTIERS IN ONCOLOGY, 2021, 11
[34]   Evaluating Solid Lung Adenocarcinoma Anaplastic Lymphoma Kinase Gene Rearrangement Using Noninvasive Radiomics Biomarkers [J].
Ma, De-Ning ;
Gao, Xin-Yi ;
Dan, Yi-Bo ;
Zhang, An-Ni ;
Wang, Wei-Jun ;
Yang, Guang ;
Zhu, Hong-Zhou .
ONCOTARGETS AND THERAPY, 2020, 13 :6927-6935
[35]   Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics [J].
Mao, Bing ;
Ma, Jingdong ;
Duan, Shaobo ;
Xia, Yuwei ;
Tao, Yaru ;
Zhang, Lianzhong .
EUROPEAN RADIOLOGY, 2021, 31 (07) :4576-4586
[36]   Funneled Bayesian Optimization for Design, Tuning and Control of Autonomous Systems [J].
Martinez-Cantin, Ruben .
IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (04) :1489-1500
[37]   Radiomics for personalised medicine: the long road ahead [J].
Miles, Kenneth .
BRITISH JOURNAL OF CANCER, 2020, 122 (07) :929-930
[38]   Artificial Intelligence for the Future Radiology Diagnostic Service [J].
Mun, Seong K. ;
Wong, Kenneth H. ;
Lo, Shih-Chung B. ;
Li, Yanni ;
Bayarsaikhan, Shijir .
FRONTIERS IN MOLECULAR BIOSCIENCES, 2021, 7
[39]   Tuning hyperparameters of machine learning algorithms and deep neural networks using metaheuristics: A bioinformatics study on biomedical and biological cases [J].
Nematzadeh, Sajjad ;
Kiani, Farzad ;
Torkamanian-Afshar, Mahsa ;
Aydin, Nizamettin .
COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2022, 97
[40]   LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity [J].
Nioche, Christophe ;
Orlhac, Fanny ;
Boughdad, Sarah ;
Reuze, Sylvain ;
Goya-Outi, Jessica ;
Robert, Charlotte ;
Pellot-Barakat, Claire ;
Soussan, Michael ;
Frouin, Frederique ;
Buvat, Irene .
CANCER RESEARCH, 2018, 78 (16) :4786-4789