A review of radiomics and genomics applications in cancers: the way towards precision medicine

被引:54
作者
Li, Simin [1 ,2 ]
Zhou, Baosen [1 ,2 ]
机构
[1] China Med Univ, Hosp 1, Dept Clin Epidemiol, Shenyang 110001, Liaoning, Peoples R China
[2] China Med Univ, Hosp 1, Ctr Evidence Based Med, Shenyang 110001, Liaoning, Peoples R China
关键词
Radiomics; Genomics; Cancer; Machine learning; Evidence-based medicine; MICROVASCULAR INVASION; MOLECULAR-FEATURES; PREDICTION; RADIOGENOMICS; GLIOBLASTOMA; SURVIVAL; NOMOGRAM;
D O I
10.1186/s13014-022-02192-2
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The application of radiogenomics in oncology has great prospects in precision medicine. Radiogenomics combines large volumes of radiomic features from medical digital images, genetic data from high-throughput sequencing, and clinical-epidemiological data into mathematical modelling. The amalgamation of radiomics and genomics provides an approach to better study the molecular mechanism of tumour pathogenesis, as well as new evidence-supporting strategies to identify the characteristics of cancer patients, make clinical decisions by predicting prognosis, and improve the development of individualized treatment guidance. In this review, we summarized recent research on radiogenomics applications in solid cancers and presented the challenges impeding the adoption of radiomics in clinical practice. More standard guidelines are required to normalize radiomics into reproducible and convincible analyses and develop it as a mature field.
引用
收藏
页数:10
相关论文
共 71 条
[1]   Predicting cell invasion in breast tumor microenvironment from radiological imaging phenotypes [J].
Arefan, Dooman ;
Hausler, Ryan M. ;
Sumkin, Jules H. ;
Sun, Min ;
Wu, Shandong .
BMC CANCER, 2021, 21 (01)
[2]   Radiomics with artificial intelligence for precision medicine in radiation therapy [J].
Arimura, Hidetaka ;
Soufi, Mazen ;
Kamezawa, Hidemi ;
Ninomiya, Kenta ;
Yamada, Masahiro .
JOURNAL OF RADIATION RESEARCH, 2019, 60 (01) :150-157
[3]   Machine and deep learning methods for radiomics [J].
Avanzo, Michele ;
Wei, Lise ;
Stancanello, Joseph ;
Vallieres, Martin ;
Rao, Arvind ;
Morin, Olivier ;
Mattonen, Sarah A. ;
El Naqa, Issam .
MEDICAL PHYSICS, 2020, 47 (05) :E185-E202
[4]   Electron Density and Biologically Effective Dose (BED) Radiomics-Based Machine Learning Models to Predict Late Radiation-Induced Subcutaneous Fibrosis [J].
Avanzo, Michele ;
Pirrone, Giovanni ;
Vinante, Lorenzo ;
Caroli, Angela ;
Stancanello, Joseph ;
Drigo, Annalisa ;
Massarut, Samuele ;
Mileto, Mario ;
Urbani, Martina ;
Trovo, Marco ;
el Naqa, Issam ;
De Paoli, Antonino ;
Sartor, Giovanna .
FRONTIERS IN ONCOLOGY, 2020, 10
[5]   Imaging genotyping of functional signaling pathways in lung squamous cell carcinoma using a radiomics approach [J].
Bak, So Hyeon ;
Park, Hyunjin ;
Lee, Ho Yun ;
Kim, Youngwook ;
Kim, Hyung-Lae ;
Jung, Sin-Ho ;
Kim, Hyeseung ;
Kim, Jonghoon ;
Park, Keunchil .
SCIENTIFIC REPORTS, 2018, 8
[6]  
Barabino Emanuele, 2021, Oncoscience, V8, P72, DOI [10.18632/oncoscience.536, 10.18632/oncoscience.536]
[7]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281
[8]   A Novel Benchmarking Approach to Assess the Agreement among Radiomic Tools [J].
Bettinelli, Andrea ;
Marturano, Francesca ;
Avanzo, Michele ;
Loi, Emiliano ;
Menghi, Enrico ;
Mezzenga, Emilio ;
Pirrone, Giovanni ;
Sarnelli, Anna ;
Strigari, Lidia ;
Strolin, Silvia ;
Paiusco, Marta .
RADIOLOGY, 2022, 303 (03) :533-541
[9]   Technical Note: An IBEX adaption toward image biomarker standardization [J].
Bettinelli, Andrea ;
Branchini, Marco ;
De Monte, Francesca ;
Scaggion, Alessandro ;
Paiusco, Marta .
MEDICAL PHYSICS, 2020, 47 (03) :1167-1173
[10]   Radiomics and artificial intelligence in lung cancer screening [J].
Binczyk, Franciszek ;
Prazuch, Wojciech ;
Bozek, Pawel ;
Polanska, Joanna .
TRANSLATIONAL LUNG CANCER RESEARCH, 2021, 10 (02) :1186-1199