Asymptotic Green's functions for time-fractional diffusion equation and their application for anomalous diffusion problem

被引:13
作者
Zhokh, Alexey A. [1 ]
Trypolskyi, Andrey I. [1 ]
Strizhak, Peter E. [1 ]
机构
[1] LV Pisarzhevskii Inst Phys Chem, Prospect Nauki 31, UA-03028 Kiev, Ukraine
关键词
Asymptotic Green's function; Time-fractional diffusion; Anomalous diffusion;
D O I
10.1016/j.physa.2017.02.015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Asymptotic Green's functions for short and long times for time-fractional diffusion equation, derived by simple and heuristic method, are provided in case if fractional derivative is presented in Caputo sense. The applicability of the asymptotic Green's functions for solving the anomalous diffusion problem on a semi-infinite rod is demonstrated. The initial value problem for longtime solution of the time-fractional diffusion equation by Green's function approach is resolved. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 81
页数:5
相关论文
共 17 条
[1]   RATIONAL SOLUTIONS FOR THE TIME-FRACTIONAL DIFFUSION EQUATION [J].
Atkinson, Colin ;
Osseiran, Adel .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (01) :92-106
[2]   Transport equation describing fractional Levy motion of suprathermal ions in TORPEX [J].
Bovet, A. ;
Gamarino, M. ;
Furno, I. ;
Ricci, P. ;
Fasoli, A. ;
Gustafson, K. ;
Newman, D. E. ;
Sanchez, R. .
NUCLEAR FUSION, 2014, 54 (10)
[3]   Time-fractional telegraph equation for hydrogen diffusion during severe accident in BWRs [J].
Cazares-Ramirez, R-, I ;
Espinosa-Paredes, G. .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2016, 28 (01) :21-28
[4]  
Ciesielski M., 2003, COMPUT METHODS MECH, P1
[5]  
Han BY, 2012, CHIN CONT DECIS CONF, P1054, DOI 10.1109/CCDC.2012.6244166
[6]   Mittag-Leffler Functions and Their Applications [J].
Haubold, H. J. ;
Mathai, A. M. ;
Saxena, R. K. .
JOURNAL OF APPLIED MATHEMATICS, 2011,
[7]   Anomalous transport in the crowded world of biological cells [J].
Hoefling, Felix ;
Franosch, Thomas .
REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (04)
[8]   The space-time fractional diffusion equation with Caputo derivatives [J].
Huang F. ;
Liu F. .
Journal of Applied Mathematics and Computing, 2005, 19 (1-2) :179-190
[9]   On Riemann-Liouville and Caputo Derivatives [J].
Li, Changpin ;
Qian, Deliang ;
Chen, YangQuan .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011
[10]   The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics [J].
Metzler, R ;
Klafter, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (31) :R161-R208