DELAY-DEPENDENT ROBUST STABILIZATION FOR UNCERTAIN STOCHASTIC FUZZY SYSTEM WITH TIME-VARYING DELAYS

被引:0
作者
Gong, Cheng [1 ]
Su, Baoku [2 ]
机构
[1] Harbin Engn Univ, Coll Nucl Sci & Technol, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Space Control & Inertial Technol Res Ctr, Harbin 150001, Peoples R China
来源
INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL | 2009年 / 5卷 / 05期
关键词
Delay-dependent; Robust stabilization; Uncertain; Fuzzy control; Time-varying delays; H-INFINITY CONTROL; STABILITY; FILTER;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The delay-dependent robust stochastic stabilization problem of stochastic T-S fuzzy delay systems with both norm bounded uncertainty and convex polyhedral uncertainty is considered. A delay-dependent robust stochastic stability criterion is given in terms of linear matrix inequalities (LMIs) by using the Lyapunov-Krasovskii functional method and Ito's formula, based on this criterion, a robust state-feedback controller resulting closed-loop system robustly asymptotically stable in mean square is developed in term of linear matrix inequality (LMI). Finally, a design example illustrates the effectiveness of the proposed method.
引用
收藏
页码:1429 / 1440
页数:12
相关论文
共 26 条
[1]  
BERMAN N, 2003, P C DEC CONTR MAUI H, V6, P5025
[2]  
Boukas EK, 2005, INT J INNOV COMPUT I, V1, P131
[3]   H∞ control of uncertain fuzzy continuous-time systems [J].
Cao, SG ;
Rees, NW ;
Feng, G .
FUZZY SETS AND SYSTEMS, 2000, 115 (02) :171-190
[4]   Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation [J].
Cao, YY ;
Lin, ZL .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2003, 11 (01) :57-67
[5]   Stochastic nonlinear minimax dynamic games with noisy measurements [J].
Charalambous, CD .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (02) :261-266
[6]   Stochastic H2/H∞ control with state-dependent noise [J].
Chen, BS ;
Zhang, WH .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (01) :45-57
[7]  
Liu HP, 2002, 2002 IEEE REGION 10 CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND POWER ENGINEERING, VOLS I-III, PROCEEDINGS, P1700, DOI 10.1109/TENCON.2002.1182661
[8]  
MALEK ZM, 1987, TIME DELAY SYSTEMS A
[9]   Robustness of exponential stability of stochastic differential delay equations [J].
Mao, X .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (03) :442-447
[10]   Robust stability of uncertain stochastic differential delay equations [J].
Mao, XR ;
Koroleva, N ;
Rodkina, A .
SYSTEMS & CONTROL LETTERS, 1998, 35 (05) :325-336