FICTITIOUS DOMAIN METHODS USING CUT ELEMENTS: III. A STABILIZED NITSCHE METHOD FOR STOKES' PROBLEM

被引:121
作者
Burman, Erik [1 ]
Hansbo, Peter [2 ]
机构
[1] UCL, Dept Math, London WC1E 6BT, England
[2] Jonkoping Univ, Dept Mech Engn, S-55111 Jonkoping, Sweden
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2014年 / 48卷 / 03期
基金
英国工程与自然科学研究理事会;
关键词
Finite element methods; stabilized methods; penalty methods; Stokes' problem; fictitious domain; PRESSURE; PROJECTIONS; PENALTY;
D O I
10.1051/m2an/2013123
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend our results on fictitious domain methods for Poisson's problem to the case of incompressible elasticity, or Stokes' problem. The mesh is not fitted to the domain boundary. Instead boundary conditions are imposed using a stabilized Nitsche type approach. Control of the non-physical degrees of freedom, i.e., those outside the physical domain, is obtained thanks to a ghost penalty term for both velocities and pressures. Both inf-sup stable and stabilized velocity pressure pairs are considered.
引用
收藏
页码:859 / 874
页数:16
相关论文
共 24 条
[1]   Numerical convergence and stability of mixed formulation with X-FEM cut-off [J].
Amdouni, S. ;
Mansouri, K. ;
Renard, Y. ;
Arfaoui, M. ;
Moakher, M. .
EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS, 2012, 21 (3-6) :160-173
[2]  
Amdouni S., 2012, PREPRINT
[3]   A fictitious domain model for the Stokes/Brinkman problem with jump embedded boundary conditions [J].
Angot, Philippe .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (11-12) :697-702
[4]  
[Anonymous], 2008, LECT NOTES MATH
[5]  
[Anonymous], 1984, CALCOLO, DOI 10.1007/bf02576171
[6]   A finite element pressure gradient stabilization for the Stokes equations based on local projections [J].
Becker, R ;
Braack, M .
CALCOLO, 2001, 38 (04) :173-199
[7]   A finite element time relaxation method [J].
Becker, Roland ;
Burman, Erik ;
Hansbo, Peter .
COMPTES RENDUS MATHEMATIQUE, 2011, 349 (5-6) :353-356
[8]   A simple pressure stabilization method for the Stokes equation [J].
Becker, Roland ;
Hansbo, Peter .
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2008, 24 (11) :1421-1430
[9]   A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity [J].
Becker, Roland ;
Burman, Erik ;
Hansbo, Peter .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (41-44) :3352-3360
[10]   ERROR ESTIMATES FOR FINITE-ELEMENT METHOD SOLUTION OF THE STOKES PROBLEM IN THE PRIMITIVE VARIABLES [J].
BERCOVIER, M ;
PIRONNEAU, O .
NUMERISCHE MATHEMATIK, 1979, 33 (02) :211-224