In this paper we develop the theory of parametric polynomial regression in Riemannian manifolds. The theory enables parametric analysis in a wide range of applications, including rigid and non-rigid kinematics as well as shape change of organs due to growth and aging. We show application of Riemannian polynomial regression to shape analysis in Kendall shape space. Results are presented, showing the power of polynomial regression on the classic rat skull growth data of Bookstein and the analysis of the shape changes associated with aging of the corpus callosum from the OASIS Alzheimer's study.
机构:
Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, ItalyUniv Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
Nobili, Francesco
Parise, Davide
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Math, 9500 Gilman Dr 0112, La Jolla, CA 92093 USAUniv Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
机构:
Univ North Carolina Chapel Hill, Chapel Hill, NC USAUniv North Carolina Chapel Hill, Chapel Hill, NC USA
Yuan, Ying
Zhu, Hongtu
论文数: 0引用数: 0
h-index: 0
机构:
Univ North Carolina Chapel Hill, Chapel Hill, NC USA
Univ North Carolina Chapel Hill, Gillings Sch Global Publ Hlth, Dept Biostat, Chapel Hill, NC 27599 USAUniv North Carolina Chapel Hill, Chapel Hill, NC USA
Zhu, Hongtu
Lin, Weili
论文数: 0引用数: 0
h-index: 0
机构:
Univ North Carolina Chapel Hill, Chapel Hill, NC USAUniv North Carolina Chapel Hill, Chapel Hill, NC USA
Lin, Weili
Marron, J. S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ North Carolina Chapel Hill, Chapel Hill, NC USAUniv North Carolina Chapel Hill, Chapel Hill, NC USA