Polynomial Regression on Riemannian Manifolds

被引:0
|
作者
Hinkle, Jacob [1 ]
Muralidharan, Prasanna [1 ]
Fletcher, P. Thomas [1 ]
Joshi, Sarang [1 ]
机构
[1] Univ Utah, SCI Inst, Salt Lake City, UT 84112 USA
来源
COMPUTER VISION - ECCV 2012, PT III | 2012年 / 7574卷
关键词
FITTING SMOOTH PATHS; EQUATIONS; SPLINES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we develop the theory of parametric polynomial regression in Riemannian manifolds. The theory enables parametric analysis in a wide range of applications, including rigid and non-rigid kinematics as well as shape change of organs due to growth and aging. We show application of Riemannian polynomial regression to shape analysis in Kendall shape space. Results are presented, showing the power of polynomial regression on the classic rat skull growth data of Bookstein and the analysis of the shape changes associated with aging of the corpus callosum from the OASIS Alzheimer's study.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] Intrinsic Polynomials for Regression on Riemannian Manifolds
    Hinkle, Jacob
    Fletcher, P. Thomas
    Joshi, Sarang
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2014, 50 (1-2) : 32 - 52
  • [2] Nonparametric Regression between General Riemannian Manifolds
    Steinke, Florian
    Hein, Matthias
    Schoelkopf, Bernhard
    SIAM JOURNAL ON IMAGING SCIENCES, 2010, 3 (03): : 527 - 563
  • [3] On the Calculus of Limiting Subjets on Riemannian Manifolds
    Hejazi, Mansoureh Alavi
    Hosseini, Seyedehsomayeh
    Pouryayevali, Mohamad R.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (01) : 593 - 607
  • [4] Foliations of Semi-Riemannian Manifolds
    Schaefer, Lars
    RESULTS IN MATHEMATICS, 2012, 61 (1-2) : 97 - 126
  • [5] Riemannian manifolds dual to static spacetimes
    Figueiredo, Carolina
    Natario, Jose
    GENERAL RELATIVITY AND GRAVITATION, 2020, 52 (09)
  • [6] Dynamic interpolation for obstacle avoidance on Riemannian manifolds
    Bloch, Anthony
    Camarinha, Margarida
    Colombo, Leonardo J.
    INTERNATIONAL JOURNAL OF CONTROL, 2021, 94 (03) : 588 - 600
  • [7] ENERGY-PRESERVING METHODS ON RIEMANNIAN MANIFOLDS
    Celledoni, Elena
    Eidnes, Solve
    Owren, Brynjulf
    Ringholm, Torbjorn
    MATHEMATICS OF COMPUTATION, 2020, 89 (322) : 699 - 716
  • [8] Generalized Geodesic Convex Functions on Riemannian Manifolds
    Kilicman, A.
    Saleh, W.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 (01): : 1 - 11
  • [9] Generalized submonotonicity and approximately convexity in Riemannian manifolds
    Malmir, F.
    Barani, A.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (01) : 299 - 323
  • [10] On Weyl's Embedding Problem in Riemannian Manifolds
    Lu, Siyuan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (11) : 3229 - 3259