Interfacial transport in lithium-ion conductors

被引:10
作者
Wang, Shaofei [1 ]
Chen, Liquan [1 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
ionic conductivity; diffusion; interface; grain boundary; lithium battery; impedance; nuclear magnetic resonance; POLYMER ELECTROLYTES; LI-ION; CERAMIC ELECTROLYTE; DIFFUSION; NANOCRYSTALLINE; CONDUCTIVITY; IMPEDANCE; POLARIZATION; RELAXATION; NMR;
D O I
10.1088/1674-1056/25/1/018202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Physical models of ion diffusion at different interfaces are reviewed. The use of impedance spectroscopy (IS), nuclear magnetic resonance (NMR), and secondary ion mass spectrometry (SIMS) techniques are also discussed. The diffusion of ions is fundamental to the operation of lithium-ion batteries, taking place not only within the grains but also across different interfaces. Interfacial ion transport usually contributes to the majority of the resistance in lithium-ion batteries. A greater understanding of the interfacial diffusion of ions is crucial to improving battery performance.
引用
收藏
页数:8
相关论文
共 50 条
[41]   Ion Transport and Electrochemical Properties of Fluorine-Free Lithium-Ion Battery Electrolytes Derived from Biomass [J].
Khan, Inayat Ali ;
Gnezdilov, Oleg Ivanovich ;
Filippov, Andrei ;
Shah, Faiz Ullah .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (23) :7769-7780
[42]   Polymer Electrolytes for Lithium-Ion Batteries Studied by NMR Techniques [J].
Volkov, Vitaly I. ;
Yarmolenko, Olga V. ;
Chernyak, Alexander V. ;
Slesarenko, Nikita A. ;
Avilova, Irina A. ;
Baymuratova, Guzaliya R. ;
Yudina, Alena V. .
MEMBRANES, 2022, 12 (04)
[43]   Multiscale modelling and analysis of lithium-ion battery charge and discharge [J].
Richardson, G. ;
Denuault, G. ;
Please, C. P. .
JOURNAL OF ENGINEERING MATHEMATICS, 2012, 72 (01) :41-72
[44]   Impact of lithium-ion coordination in carbonate-based electrolyte on lithium-ion intercalation kinetics into graphite electrode [J].
Uchida, Satoshi ;
Katada, Tomohide ;
Ishikawa, Masashi .
ELECTROCHEMISTRY COMMUNICATIONS, 2020, 114
[45]   Solid state lithium ion conductors for lithium batteries [J].
Bashiri, Parisa ;
Nazri, Gholamabbas .
PHYSICAL SCIENCES REVIEWS, 2022, :3741-3751
[46]   Poly(arylene ether)-Based Single-Ion Conductors for Lithium-Ion Batteries [J].
Oh, Hyukkeun ;
Xu, Kui ;
Yoo, Hyun D. ;
Kim, Dae Soo ;
Chanthad, Chalathorn ;
Yang, Guang ;
Jin, Jiezhu ;
Ayhan, Ismail Alperen ;
Oh, Seung M. ;
Wang, Qing .
CHEMISTRY OF MATERIALS, 2016, 28 (01) :188-196
[47]   Transport coefficients for ion and solvent coupling. The case of the lithium-ion battery electrolyte [J].
Kjelstrup, Signe ;
Gunnarshaug, Astrid Fagertun ;
Gullbrekken, Oystein ;
Schnell, Sondre K. ;
Lervik, Anders .
JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (03)
[48]   Structure of the Solid-State Electrolyte Li3+2xP1-xAlxS4: Lithium-Ion Transport Properties in Crystalline vs Glassy Phases [J].
Ramos, Erika P. ;
Bazak, J. David ;
Assoud, Abdeljalil ;
Huq, Ashfia ;
Goward, Gillian ;
Nazar, Linda F. .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (51) :56767-56779
[49]   Li+ conducting polymer electrolyte based on ionic liquid for lithium and lithium-ion batteries [J].
Lewandowski, Andrzej ;
Swiderska-Mocek, Agnieszka ;
Waliszewski, Lukasz .
ELECTROCHIMICA ACTA, 2013, 92 :404-411
[50]   Emerging interfacial chemistry of graphite anodes in lithium-ion batteries [J].
Yao, Yu-Xing ;
Yan, Chong ;
Zhang, Qiang .
CHEMICAL COMMUNICATIONS, 2020, 56 (93) :14570-14584