Interfacial transport in lithium-ion conductors

被引:10
作者
Wang, Shaofei [1 ]
Chen, Liquan [1 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
ionic conductivity; diffusion; interface; grain boundary; lithium battery; impedance; nuclear magnetic resonance; POLYMER ELECTROLYTES; LI-ION; CERAMIC ELECTROLYTE; DIFFUSION; NANOCRYSTALLINE; CONDUCTIVITY; IMPEDANCE; POLARIZATION; RELAXATION; NMR;
D O I
10.1088/1674-1056/25/1/018202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Physical models of ion diffusion at different interfaces are reviewed. The use of impedance spectroscopy (IS), nuclear magnetic resonance (NMR), and secondary ion mass spectrometry (SIMS) techniques are also discussed. The diffusion of ions is fundamental to the operation of lithium-ion batteries, taking place not only within the grains but also across different interfaces. Interfacial ion transport usually contributes to the majority of the resistance in lithium-ion batteries. A greater understanding of the interfacial diffusion of ions is crucial to improving battery performance.
引用
收藏
页数:8
相关论文
共 50 条
[31]   Lithium ion transport in micro- and nanocrystalline lithium sulphide Li2S [J].
Gombotz, Maria ;
Wilkening, Alexandra ;
Wilkening, H. Martin R. .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES, 2022, 77 (06) :397-404
[32]   Diffusion Pathways and Activation Energies in Crystalline Lithium-Ion Conductors [J].
Wiedemann, Dennis ;
Islam, Mazharul M. ;
Bredow, Thomas ;
Lerch, Martin .
ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2017, 231 (7-8) :1279-1302
[33]   Effects of stress on lithium transport in amorphous silicon electrodes for lithium-ion batteries [J].
Pan, Jie ;
Zhang, Qinglin ;
Li, Juchuan ;
Beck, Matthew J. ;
Xiao, Xingcheng ;
Cheng, Yang-Tse .
NANO ENERGY, 2015, 13 :192-199
[34]   Synthesis, structure and diffusion pathways of fast lithium-ion conductors in the polymorphs α- and β-Li8SnP4 [J].
Strangmueller, Stefan ;
Eickhoff, Henrik ;
Klein, Wilhelm ;
Raudaschl-Sieber, Gabriele ;
Kirchhain, Holger ;
Kutsch, Tobias ;
Baran, Volodymyr ;
Senyshyn, Anatoliy ;
van Wuellen, Leo ;
Gasteiger, Hubert A. ;
Faessler, Thomas F. .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (27) :15254-15268
[35]   Fluoride ion dynamics in nanocrystalline α-PbF2: On the tremendous impact of structural disorder on F- anion hopping in poor ion conductors [J].
Scheiber, Thomas ;
Gombotz, Maria ;
Hogrefe, Katharina ;
Wilkening, H. Martin R. .
SOLID STATE IONICS, 2022, 387
[36]   A study on time-dependent low temperature power performance of a lithium-ion battery [J].
Cho, Hyung-Man ;
Choi, Woo-Sung ;
Go, Joo-Young ;
Bae, Sang-Eun ;
Shin, Heon-Cheol .
JOURNAL OF POWER SOURCES, 2012, 198 :273-280
[37]   Disorder-induced enhancement of lithium-ion transport in solid-state electrolytes [J].
Chen, Zhimin ;
Du, Tao ;
Krishnan, N. M. Anoop ;
Yue, Yuanzheng ;
Smedskjaer, Morten M. .
NATURE COMMUNICATIONS, 2025, 16 (01)
[38]   Mapping of Lithium-Ion Battery Electrolyte Transport Properties and Limiting Currents with In Situ MRI [J].
Bazak, J. David ;
Allen, J. P. ;
Krachkovskiy, S. A. ;
Goward, G. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (14)
[39]   Agent molecule modulated low-temperature activation of solid-state lithium-ion transport for polymer electrolytes [J].
Yu, Jiwon ;
Lee, Myungsuk ;
Kim, Yeonseo ;
Lim, Hyung-Kyu ;
Chae, Jonghyun ;
Hwang, Gyeong S. ;
Lee, Sangheon .
JOURNAL OF POWER SOURCES, 2021, 505
[40]   Effect of polymerizing on lithium-ion transport in electrolyte [J].
Xue, Jin-Xin ;
Liu, Feng-Quan ;
Jia, Si-Xin ;
Xiang, Tian-Qi ;
Xiang, Jun-Feng ;
Yan, Da-Dong ;
Zhou, Jian-Jun ;
Li, Lin .
IONICS, 2022, 29 (2) :591-601