Interfacial transport in lithium-ion conductors

被引:10
作者
Wang, Shaofei [1 ]
Chen, Liquan [1 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
ionic conductivity; diffusion; interface; grain boundary; lithium battery; impedance; nuclear magnetic resonance; POLYMER ELECTROLYTES; LI-ION; CERAMIC ELECTROLYTE; DIFFUSION; NANOCRYSTALLINE; CONDUCTIVITY; IMPEDANCE; POLARIZATION; RELAXATION; NMR;
D O I
10.1088/1674-1056/25/1/018202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Physical models of ion diffusion at different interfaces are reviewed. The use of impedance spectroscopy (IS), nuclear magnetic resonance (NMR), and secondary ion mass spectrometry (SIMS) techniques are also discussed. The diffusion of ions is fundamental to the operation of lithium-ion batteries, taking place not only within the grains but also across different interfaces. Interfacial ion transport usually contributes to the majority of the resistance in lithium-ion batteries. A greater understanding of the interfacial diffusion of ions is crucial to improving battery performance.
引用
收藏
页数:8
相关论文
共 50 条
[21]   Rational Tailoring of NASICON-Type Electrode Materials for Enhanced Ion Transport in Sodium- and Lithium-Ion Batteries [J].
Seth, Deepak ;
Venkatesha, Akshatha ;
Bhattacharyya, Aninda J. ;
Agarwal, Manish ;
Haider, M. Ali .
ACS APPLIED ENERGY MATERIALS, 2025, 8 (14) :10050-10061
[22]   Towards a lattice-matching solid-state battery: synthesis of a new class of lithium-ion conductors with the spinel structure [J].
Rosciano, Fabio ;
Pescarmona, Paolo P. ;
Houthoofd, Kristof ;
Persoons, Andre ;
Bottke, Patrick ;
Wilkening, Martin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (16) :6107-6112
[23]   Lithium-Ion Transport through Complex Interphases in Lithium Metal Batteries [J].
Angarita-Gomez, Stefany ;
Balbuena, Perla B. .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (51) :56758-56766
[24]   An Agglomerate Model of Lithium-Ion Battery Cathodes [J].
Lueth, S. ;
Sauter, U. S. ;
Bessler, W. G. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (02) :A210-A222
[25]   Lithium-ion transport in covalent organic framework membrane [J].
Liu, Ziya ;
Zhang, Kun ;
Huang, Guoji ;
Bian, Shuyang ;
Huang, Yang ;
Jiang, Xinzhu ;
Pan, Yaoyao ;
Wang, Yuxiang ;
Xia, Xifeng ;
Xu, Bingqing ;
Zhang, Gen .
CHEMICAL ENGINEERING JOURNAL, 2022, 433
[26]   Ab initio molecular dynamics study of isotope effects in lithium-ion conductors [J].
Morita, Kenji ;
Hoshino, Tsuyoshi .
SOLID STATE IONICS, 2020, 355
[27]   Boosting Lithium-Ion Transport Kinetics by Increasing the Local Lithium-Ion Concentration Gradient in Composite Anodes of Lithium-Ion Batteries [J].
Wu, Weiwei ;
Sun, Zhonggui ;
He, Qiang ;
Shi, Xingwang ;
Ge, Xuhui ;
Cheng, Jipeng ;
Wang, Jun ;
Zhang, Zhiya .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (12) :14752-14758
[28]   Studies on Lithium-Ion Diffusion in Heat-Treated CNBs by Microelectrode Method [J].
Sano, Atsushi ;
Kurihara, Masato ;
Abe, Takeshi ;
Ogumi, Zempachi .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A639-A644
[29]   Coordination compounds in lithium storage and lithium-ion transport [J].
Liu, Jingwei ;
Xie, Daixi ;
Shi, Wei ;
Cheng, Peng .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (06) :1624-1642
[30]   Anodic Interfacial Evolution in Extremely Fast Charged Lithium-Ion Batteries [J].
Sarkar, Abhishek ;
Shrotriya, Pranav ;
Nlebedim, Ikenna C. .
ACS APPLIED ENERGY MATERIALS, 2022, 5 (03) :3179-3188