Interfacial transport in lithium-ion conductors

被引:9
作者
Wang, Shaofei [1 ]
Chen, Liquan [1 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
ionic conductivity; diffusion; interface; grain boundary; lithium battery; impedance; nuclear magnetic resonance; POLYMER ELECTROLYTES; LI-ION; CERAMIC ELECTROLYTE; DIFFUSION; NANOCRYSTALLINE; CONDUCTIVITY; IMPEDANCE; POLARIZATION; RELAXATION; NMR;
D O I
10.1088/1674-1056/25/1/018202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Physical models of ion diffusion at different interfaces are reviewed. The use of impedance spectroscopy (IS), nuclear magnetic resonance (NMR), and secondary ion mass spectrometry (SIMS) techniques are also discussed. The diffusion of ions is fundamental to the operation of lithium-ion batteries, taking place not only within the grains but also across different interfaces. Interfacial ion transport usually contributes to the majority of the resistance in lithium-ion batteries. A greater understanding of the interfacial diffusion of ions is crucial to improving battery performance.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Interfacial transport in lithium-ion conductors
    王少飞
    陈立泉
    Chinese Physics B, 2016, (01) : 47 - 54
  • [2] Understanding Ion Dynamics in Closoborate-Type Lithium-Ion Conductors on Different Time-Scales
    Dorai, Arunkumar
    Kim, Sangryun
    Kuwata, Naoaki
    Kawamura, Junichi
    Kisu, Kazuaki
    Orimo, Shin-ichi
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (18) : 4864 - 4871
  • [3] Lithium-Ion Transport in Li4Ti5O12 Epitaxial Thin Films vs. State of Charge
    Pagani, Francesco
    Doebeli, Max
    Battaglia, Corsin
    BATTERIES & SUPERCAPS, 2021, 4 (02) : 316 - 321
  • [4] A Dual-Crosslinking Design for Resilient Lithium-Ion Conductors
    Lopez, Jeffrey
    Sun, Yongming
    Mackanic, David G.
    Lee, Minah
    Foudeh, Amir M.
    Song, Min-Sang
    Cui, Yi
    Bao, Zhenan
    ADVANCED MATERIALS, 2018, 30 (43)
  • [5] Interfacial phenomena between lithium ion conductors and cathodes
    Yamada, Hirotoshi
    Suzuki, Kentaro
    Nishio, Kento
    Takemoto, Koshin
    Isomichi, Gakuho
    Moriguchi, Isamu
    SOLID STATE IONICS, 2014, 262 : 879 - 882
  • [6] Nitride Lithium-ion Conductors with Enhanced Oxidative Stability
    Jun, KyuJung
    Xiao, Yihan
    Sun, Wenhao
    Byeon, Young-Woon
    Kim, Haegyeom
    Ceder, Gerbrand
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (09)
  • [7] Enhanced lithium-ion transport in organosilyl electrolytes for lithium-ion battery applications
    Lyons, Leslie J.
    Beecher, Scott
    Cunningham, Evan
    Derrah, Tom
    Su, Shengyi
    Zhu, Junmian
    Usrey, Monica
    Pena-Hueso, Adrian
    Johnson, Tobias
    West, Robert
    MRS COMMUNICATIONS, 2019, 9 (03) : 985 - 991
  • [8] The Origin of Fast Lithium-Ion Transport in the Inorganic Solid Electrolyte Interphase on Lithium Metal Anodes
    Ma, Xia-Xia
    Shen, Xin
    Chen, Xiang
    Fu, Zhong-Heng
    Yao, Nan
    Zhang, Rui
    Zhang, Qiang
    SMALL STRUCTURES, 2022, 3 (08):
  • [9] Porous Composite Gel Polymer Electrolyte with Interfacial Transport Pathways for Flexible Quasi Solid Lithium-Ion Batteries
    Xu, Yanjun
    Gao, Lina
    Wu, Xianzhang
    Zhang, Shengzhao
    Wang, Xiuli
    Gu, Changdong
    Xia, Xinhui
    Kong, Xueqian
    Tu, Jiangping
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (20) : 23743 - 23750
  • [10] Effect of Attrition Milling on Lithium-Ion Conductors
    Lu, Xiaojuan
    Meng, Fengli
    Wang, Liyue
    Zhu, Huaqing
    Li, Haihui
    POWDER METALLURGY AND METAL CERAMICS, 2018, 56 (11-12) : 611 - 616