Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols

被引:34
作者
Bogoya, J. M. [1 ]
Boettcher, A. [2 ]
Grudsky, S. M. [3 ]
Maximenko, E. A. [4 ]
机构
[1] Pontificia Univ Javeriana, Dept Matemat, Bogota 01110, DC, Colombia
[2] Tech Univ Chemnitz, Fak Math, D-09107 Chemnitz, Germany
[3] CINVESTAV, Dept Matemat, Ciudad De Mexico 07360, Mexico
[4] Inst Politecn Nacl, Escuela Super Fis & Matemat, Mexico City 07730, DF, Mexico
关键词
Toeplitz matrix; Eigenvalue; Asymptotic expansion; Spectral asymptotics; DETERMINANTS; ASYMPTOTICS;
D O I
10.1016/j.jmaa.2014.09.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper presents higher-order asymptotic formulas for the eigenvalues of large Hermitian Toeplitz matrices with moderately smooth symbols which trace out a simple loop on the real line. The formulas are established not only for the extreme eigenvalues, but also for the inner eigenvalues. The results extend and make more precise existing results, which so far pertain to banded matrices or to matrices with infinitely differentiable symbols. Also given is a fixed-point equation for the eigenvalues which may be solved numerically by an iteration method. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1308 / 1334
页数:27
相关论文
共 25 条
[1]  
[Anonymous], ENCY MATH PHYS
[2]   THE FISHER-HARTWIG CONJECTURE AND TOEPLITZ EIGENVALUES [J].
BASOR, EL ;
MORRISON, KE .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 202 :129-142
[3]   Inside the eigenvalues of certain Hermitian Toeplitz band matrices [J].
Boettcher, A. ;
Grudsky, S. M. ;
Maksimenko, E. A. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (09) :2245-2264
[4]   The First Order Asymptotics of the Extreme Eigenvectors of Certain Hermitian Toeplitz Matrices [J].
Boettcher, A. ;
Grudsky, S. ;
Maksimenko, E. A. ;
Unterberger, J. .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2009, 63 (02) :165-180
[5]  
Bottcher A., 2005, Spectral Properties of Banded Toeplitz Matrices
[6]  
BOTTCHER A, 1999, UNIVERSITEXT
[7]   Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices [J].
Dai, Hui ;
Geary, Zachary ;
Kadanoff, Leo P. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
[8]  
Deift P, 2012, BULL INST MATH ACAD, V7, P437
[9]   Toeplitz Matrices and Toeplitz Determinants under the Impetus of the Ising Model: Some History and Some Recent Results [J].
Deift, Percy ;
Its, Alexander ;
Krasovsky, Igor .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (09) :1360-1438
[10]   Asymptotics of Toeplitz, Hankel, and Toeplitz plus Hankel determinants with Fisher-Hartwig singularities [J].
Deift, Percy ;
Its, Alexander ;
Krasovsky, Icor .
ANNALS OF MATHEMATICS, 2011, 174 (02) :1243-1299