GAN-Based Focusing-Enhancement Method for Monochromatic Synthetic Aperture Imaging

被引:5
作者
Ye, Guoyao [1 ]
Zhang, Zixin [1 ]
Ding, Li [1 ,2 ,3 ]
Li, Yinwei [2 ,4 ]
Zhu, Yiming [1 ,2 ,3 ]
机构
[1] Univ Shanghai Sci & Technol, Terahertz Technol Innovat Res Inst, Shanghai 200093, Peoples R China
[2] Univ Shanghai Sci & Technol, Shanghai Key Lab Modern Opt Syst, Shanghai 200093, Peoples R China
[3] Terahertz Sci Cooperat Innovat Ctr, Shanghai 200093, Peoples R China
[4] Tongji Univ, Shanghai Inst Intelligent Sci & Technol, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
Imaging; Generators; Sensors; Apertures; Generative adversarial networks; Gallium nitride; Standards; MMW near field imaging; monochromatic full-focus; SAR; image fusion; GAN-FEM;
D O I
10.1109/JSEN.2020.2996656
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Two-dimensional (2-D) synthetic aperture imaging with a single frequency suffers from limited depth-of-focus (DOF), and leads to the difficulty of focusing volume targets. In this paper,as opposed to using a wide band for 3-D imaging, this out-of-focus problem is examined as a multi-focal imaging issue. To solve the limited DOF problem, we propose a generative adversarial network (GAN) based focusing-enhancement method (GAN-FEM) to fit an unknown out-of-focus kernel for MMW monochromatic synthetic aperture imaging. To determine which type of MMW-images dataset of input can be better suitable for GAN, the grayscale and pseudo-color images dataset are tested respectively to train the neural network. Proof-of-principle experiments are performed at 94 GHz and the results prove that our proposed GAN-FEM can greatly improve the focusing performance for volume targets. The effectiveness of our proposed method confirms the focusing-enhancement capacity of 2-D monochromatic imaging system for 3-D targets, and provides a possible solution to reduce the system complexity for practical 3-D imaging missions.
引用
收藏
页码:11484 / 11489
页数:6
相关论文
共 21 条
[11]  
Mirza, 2014, ARXIV
[12]  
Nair V, 2010, P 27 INT C MACH LEAR, V27, P807
[13]   LATEST TRENDS IN MILLIMETER-WAVE IMAGING TECHNOLOGY [J].
Oka, S. ;
Togo, H. ;
Kukutsu, N. ;
Nagatsuma, T. .
PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2008, 1 :197-204
[14]   High-resolution 3D microwave imaging of a moving target using optical motion capture [J].
Sheen, David M. ;
Clark, R. Trevor ;
Tedeschi, J. ;
Jones, A. Mark ;
Hall, Thomas E. .
PASSIVE AND ACTIVE MILLIMETER-WAVE IMAGING XXII, 2019, 10994
[15]   Wide-bandwidth, wide-beamwidth, high-resolution, millimeter-wave imaging for concealed weapon detection [J].
Sheen, David M. ;
Fernandes, Justin L. ;
Tedeschi, Jonathan R. ;
McMakin, Douglas L. ;
Jones, A. Mark ;
Lechelt, Wayne M. ;
Severtsen, Ronald H. .
PASSIVE AND ACTIVE MILLIMETER-WAVE IMAGING XVI, 2013, 8715
[16]  
Simonyan K, 2015, Arxiv, DOI arXiv:1409.1556
[17]   Single-frequency microwave imaging with dynamic metasurface apertures [J].
Sleasman, Timothy ;
Boyarsky, Michael ;
Imani, Mohammadreza F. ;
Fromenteze, Thomas ;
Gollub, Jonah N. ;
Smith, David R. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2017, 34 (08) :1713-1726
[18]  
Srivastava N, 2014, J MACH LEARN RES, V15, P1929
[19]  
Wanhai L. G. Y., 2001, ACTA OPT SINICA, V11, P012
[20]  
Xu B., 2015, Empirical evaluation of rectified activations in convolutional network