DNA metallization for high performance Li-ion battery anodes

被引:11
|
作者
Kim, Dong Jun [1 ]
Woo, Min-Ah [2 ]
Jung, Ye Lim [2 ]
Bharathi, K. Kamala [1 ]
Park, Hyun Gyu [2 ]
Kim, Do Kyung [1 ]
Choi, Jang Wook [3 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Biomol & Chem Engn, Taejon 305701, South Korea
[3] Korea Adv Inst Sci & Technol, Inst NanoCentury, Ctr Natureinspired Technol CNiT, Grad Sch EEWS, Taejon 305701, South Korea
基金
新加坡国家研究基金会;
关键词
Biological template; DNA nanostructure; DNA metallization; Lithium ion battery; FOLDING DNA; LITHIUM; NANOWIRES; ORIGAMI; COMPLEX; SHAPES;
D O I
10.1016/j.nanoen.2014.05.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal cluster formation on the DNA backbone, known as so-called DNA metallization, has caught much attention for both biological and non-biological research areas. DNA metallization is particularly useful for overcoming intrinsically tow electronic conductivity of DNA and has been used for generating conductive wires for various applications such as molecular electronics. Meanwhile, designing effective nanostructure electrodes are very critical for advanced lithium ion batteries (LIBs) especially in achieving high energy densities and long cycle lives. Among various LIB anode candidates, metal oxides offer several times higher theoretical capacities compared to those of conventional graphite anodes, utilizing unique conversion reaction mechanism. Herein, we report a 1D nickel oxide nanostructure whose morphology was directed by DNA metallization. The unique 1D DNA nanostructure delivered high reversible capacity of 850 mA h g(-1) and robust cycling performance for 150 cycles. The present study suggests that various nanostructures in biological systems and nature, especially after simple chemical reactions, can be key elements for high capacity LIB electrodes that suffer from large volume changes during battery operations. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:17 / 24
页数:8
相关论文
共 50 条
  • [1] A hierarchical hybrid design for high performance tin based Li-ion battery anodes
    Song, Xuefeng
    NANOTECHNOLOGY, 2013, 24 (20)
  • [2] Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes
    Wang, Jing
    Meng, Xiangcai
    Fan, Xiulin
    Zhang, Wenbo
    Zhang, Hongyong
    Wang, Chunsheng
    ACS NANO, 2015, 9 (06) : 6576 - 6586
  • [3] Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes
    Liu, Nian
    Huo, Kaifu
    McDowell, Matthew T.
    Zhao, Jie
    Cui, Yi
    SCIENTIFIC REPORTS, 2013, 3
  • [4] Conductive Rigid Skeleton Supported Silicon as High-Performance Li-Ion Battery Anodes
    Chen, Xilin
    Li, Xiaolin
    Ding, Fei
    Xu, Wu
    Xiao, Jie
    Cao, Yuliang
    Meduri, Praveen
    Liu, Jun
    Graff, Gordon L.
    Zhang, Ji-Guang
    NANO LETTERS, 2012, 12 (08) : 4124 - 4130
  • [5] Preparation of uniform Si nanoparticles for high-performance Li-ion battery anodes
    Sun, Lin
    Su, Tingting
    Xu, Lei
    Du, Hong-Bin
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (03) : 1521 - 1525
  • [6] Three-Dimensional Hierarchical Ternary Nanostructures for High-Performance Li-Ion Battery Anodes
    Liu, Borui
    Soares, Paulo
    Checkles, Constantine
    Zhao, Yu
    Yu, Guihua
    NANO LETTERS, 2013, 13 (07) : 3414 - 3419
  • [7] Electron/Ion Transport Enhancer in High Capacity Li-Ion Battery Anodes
    Kwon, Yo Han
    Minnici, Krysten
    Huie, Matthew M.
    Takeuchi, Kenneth J.
    Takeuchi, Esther S.
    Marschilok, Amy C.
    Reichmanis, Elsa
    CHEMISTRY OF MATERIALS, 2016, 28 (18) : 6689 - 6697
  • [8] Co-Ge compounds and their electrochemical performance as high-performance Li-ion battery anodes
    Kim, Do-Hyeon
    Park, Cheol-Min
    MATERIALS TODAY ENERGY, 2020, 18 (18)
  • [9] Li reaction pathways in Ge and high-performance Ge nanocomposite anodes for Li-ion batteries
    Lee, Dong-Hun
    Kim, Do-Hyeon
    Jung, Heechul
    Park, Cheol-Min
    CHEMICAL ENGINEERING JOURNAL, 2023, 454
  • [10] SnO2-CuO/graphene nanocomposites for high performance Li-ion battery anodes
    Zhao Jun
    Shan WanFei
    Xia XinBei
    Wang Qi
    Xing LiLi
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2014, 57 (06) : 1081 - 1084