Solar forcing synchronizes decadal North Atlantic climate variability

被引:119
作者
Thieblemont, Remi [1 ]
Matthes, Katja [1 ,2 ]
Omrani, Nour-Eddine [3 ,4 ]
Kodera, Kunihiko [5 ]
Hansen, Felicitas [1 ]
机构
[1] GEOMAR Helmholtz Ctr Ocean Res, Res Div Ocean Circulat & Climate, D-24105 Kiel, Germany
[2] Univ Kiel, D-24118 Kiel, Germany
[3] Univ Bergen, Bjerknes Ctr, N-5020 Bergen, Norway
[4] Univ Bergen, Inst Geophys, N-5020 Bergen, Norway
[5] Nagoya Univ, Solar Terr Environm Lab, Chikusa Ku, Nagoya, Aichi 4648601, Japan
关键词
OZONE; CYCLE; IRRADIANCE; IMPACT; CMIP5; OSCILLATION; MECHANISM; DYNAMICS; PACIFIC; PEAKS;
D O I
10.1038/ncomms9268
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quasi-decadal variability in solar irradiance has been suggested to exert a substantial effect on Earth's regional climate. In the North Atlantic sector, the 11-year solar signal has been proposed to project onto a pattern resembling the North Atlantic Oscillation (NAO), with a lag of a few years due to ocean-atmosphere interactions. The solar/NAO relationship is, however, highly misrepresented in climate model simulations with realistic observed forcings. In addition, its detection is particularly complicated since NAO quasi-decadal fluctuations can be intrinsically generated by the coupled ocean-atmosphere system. Here we compare two multi-decadal ocean-atmosphere chemistry-climate simulations with and without solar forcing variability. While the experiment including solar variability simulates a 1-2-year lagged solar/NAO relationship, comparison of both experiments suggests that the 11-year solar cycle synchronizes quasi-decadal NAO variability intrinsic to the model. The synchronization is consistent with the downward propagation of the solar signal from the stratosphere to the surface.
引用
收藏
页数:8
相关论文
共 48 条
[1]  
Adolphi F, 2014, NAT GEOSCI, V7, P662, DOI [10.1038/NGEO2225, 10.1038/ngeo2225]
[2]  
Andrews D. G., 1987, Middle atmosphere dynamics, V40
[3]   A simulated lagged response of the North Atlantic Oscillation to the solar cycle over the period 1960-2009 [J].
Andrews, M. B. ;
Knight, J. R. ;
Gray, L. J. .
ENVIRONMENTAL RESEARCH LETTERS, 2015, 10 (05)
[4]   Spatial Weighting and Iterative Projection Methods for EOFs [J].
Baldwin, Mark P. ;
Stephenson, David B. ;
Jolliffe, Ian T. .
JOURNAL OF CLIMATE, 2009, 22 (02) :234-243
[5]   NAO-ocean circulation interactions in a coupled general circulation model [J].
Bellucci, A. ;
Gualdi, S. ;
Scoccimarro, E. ;
Navarra, A. .
CLIMATE DYNAMICS, 2008, 31 (7-8) :759-777
[6]   The Brewer-Dobson circulation [J].
Butchart, Neal .
REVIEWS OF GEOPHYSICS, 2014, 52 (02) :157-184
[7]   The 11 year solar cycle signal in transient simulations from the Whole Atmosphere Community Climate Model [J].
Chiodo, G. ;
Calvo, N. ;
Marsh, D. R. ;
Garcia-Herrera, R. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
[8]   Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing [J].
Cionni, I. ;
Eyring, V. ;
Lamarque, J. F. ;
Randel, W. J. ;
Stevenson, D. S. ;
Wu, F. ;
Bodeker, G. E. ;
Shepherd, T. G. ;
Shindell, D. T. ;
Waugh, D. W. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (21) :11267-11292
[9]  
Czaja A, 2002, J CLIMATE, V15, P606, DOI 10.1175/1520-0442(2002)015<0606:OIOASA>2.0.CO
[10]  
2