Nonparametric estimation of the pair correlation function of replicated inhomogeneous point processes

被引:7
作者
Xu, Ganggang [1 ]
Zhao, Chong [1 ]
Jalilian, Abdollah [2 ]
Waagepetersen, Rasmus [3 ]
Zhang, Jingfei [1 ]
Guan, Yongtao [1 ]
机构
[1] Univ Miami, Dept Management Sci, Coral Gables, FL 33146 USA
[2] Razi Univ, Dept Stat, Bagh E Abrisham 67144, Kermanshah, Iran
[3] Aalborg Univ, Dept Math Sci, Fredrik Bajersvej 7G, DK-9220 Aalborg, Denmark
关键词
Confidence band; estimating equations; local polynomial estimator; nonparametric estimation; orthogonal series estimator; replicated point patterns; CROSS-VALIDATION; LIKELIHOOD; VARIANCE; PATTERN;
D O I
10.1214/20-EJS1755
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the nonparametric estimation of the isotropic pair correlation function (PCF) of inhomogeneous point processes when replicates are available. Based on carefully designed estimating equations, two types of nonparametric estimators, i.e., the local polynomial estimator and the orthogonal series estimator, are proposed and studied. The proposed estimators circumvent the problems caused by the need for estimating the unknown intensity function for kernel smoothed PCF estimators and they are free of edge correction terms. Asymptotic properties are investigated for both estimators and valid point-wise confidence bands are derived. Finite sample performances of the proposed estimators are demonstrated by simulation as well as an application to the Sina Weibo posting data.
引用
收藏
页码:3730 / 3765
页数:36
相关论文
共 32 条
[1]  
BADDELEY AJ, 1993, J R STAT SOC C-APPL, V42, P641
[2]   Non- and semi-parametric estimation of interaction in inhomogeneous point patterns [J].
Baddeley, AJ ;
Moller, J ;
Waagepetersen, R .
STATISTICA NEERLANDICA, 2000, 54 (03) :329-350
[3]  
BESAG J, 1977, J ROY STAT SOC B MET, V39, P73
[4]   A general central limit theorem and a subsampling variance estimator for α-mixing point processes [J].
Biscio, Christophe Ange Napoleon ;
Waagepetersen, Rasmus .
SCANDINAVIAN JOURNAL OF STATISTICS, 2019, 46 (04) :1168-1190
[5]   Modelling the mean of a doubly stochastic Poisson process by functional data analysis [J].
Bouzas, P. R. ;
Valderrama, M. J. ;
Aguilera, A. M. ;
Ruiz-Fuentes, N. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (10) :2655-2667
[6]   A Tutorial on Palm Distributions for Spatial Point Processes [J].
Coeurjolly, Jean-Francois ;
Moller, Jesper ;
Waagepetersen, Rasmus .
INTERNATIONAL STATISTICAL REVIEW, 2017, 85 (03) :404-420
[7]   Variational approach for spatial point process intensity estimation [J].
Coeurjolly, Jean-Francois ;
Moller, Jesper .
BERNOULLI, 2014, 20 (03) :1097-1125
[8]  
Cook RJ, 2007, STAT BIOL HEALTH, P1, DOI 10.1007/978-0-387-69810-6
[9]   ANALYSIS OF VARIANCE FOR REPLICATED SPATIAL POINT PATTERNS IN CLINICAL NEUROANATOMY [J].
DIGGLE, PJ ;
LANGE, N ;
BENES, FM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1991, 86 (415) :618-625
[10]   Asymptotic properties of the minimum contrast estimators for projections of inhomogeneous space-time shot-noise Cox processes [J].
Dvorak, Jiri ;
Prokesova, Michaela .
Applications of Mathematics, 2016, 61 (04) :387-411