Spectral-spatial joint sparsity unmixing of hyperspectral images based on framelet transform

被引:7
作者
Xu, Chenguang [1 ]
Wu, Zhaoming [1 ]
Li, Fan [1 ]
Zhang, Shaoquan [1 ]
Deng, Chengzhi [1 ]
Wang, Yuanyun [1 ]
机构
[1] Nanchang Inst Technol, Jiangxi Prov Key Lab Water Informat Cooperat Sens, Nanchang 330099, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral imaging; Framelet transform; Sparse unmixing; Spatially-weighted unmixing; REGRESSION;
D O I
10.1016/j.infrared.2020.103564
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The purpose of hyperspectral unmixing is to estimate the spectral signatures composing the data (endmembers) and their abundance fractions. However, the conventional sparse unmixing involves finding the optimal subset of signatures for the observed data in a very large standard spectral library in the spatial domain and the spatial domain information has many drawbacks which are very scattered, redundancy, and susceptible to noise. In this paper, a new sparse unmixing algorithm is based on framelet domain, namely spectral-spatial joint sparsity unmixing of hyperspectral images based on framelet transform (SSFSU), is proposed to complete the unmixing task of hyperspectral remote sensing images. SSFSU can improve the efficiency of data feature extraction and enhance the anti-noise performance by using the framelet transform information. the experimental results of synthetic and real data show that the SSFSU algorithm has better anti-noise performance and unmixing results compared with other advanced sparse unmixing methods.
引用
收藏
页数:17
相关论文
共 36 条
[1]   An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems [J].
Afonso, Manya V. ;
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (03) :681-695
[2]  
Bioucas-Dias J., 2010, P 2 IEEE GRSS WORKSH
[3]   Hyperspectral Remote Sensing Data Analysis and Future Challenges [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Camps-Valls, Gustavo ;
Scheunders, Paul ;
Nasrabadi, Nasser M. ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) :6-36
[4]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[5]   A VARIABLE SPLITTING AUGMENTED LAGRANGIAN APPROACH TO LINEAR SPECTRAL UNMIXING [J].
Bioucas-Dias, Jose M. .
2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, :1-4
[6]   A framelet-based image inpainting algorithm [J].
Cai, Jian-Feng ;
Chan, Raymond H. ;
Shen, Zuowei .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2008, 24 (02) :131-149
[7]   Framelet-Based Blind Motion Deblurring From a Single Image [J].
Cai, Jian-Feng ;
Ji, Hui ;
Liu, Chaoqiang ;
Shen, Zuowei .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (02) :562-572
[8]   Spatially Adaptive Hyperspectral Unmixing [J].
Canham, Kelly ;
Schlamm, Ariel ;
Ziemann, Amanda ;
Basener, Bill ;
Messinger, David .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (11) :4248-4262
[9]   Deconvolution: a wavelet frame approach [J].
Chai, Anwei ;
Shen, Zuowei .
NUMERISCHE MATHEMATIK, 2007, 106 (04) :529-587
[10]   Tight frame: an efficient way for high-resolution image reconstruction [J].
Chan, RH ;
Riemenschneider, SD ;
Shen, LX ;
Shen, ZW .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 17 (01) :91-115