An involute spiral that matches G2 Hermite data in the plane

被引:14
|
作者
Goodman, T. N. T. [2 ]
Meek, D. S. [1 ]
Walton, D. J. [3 ]
机构
[1] Univ Manitoba, Dept Comp Sci, Winnipeg, MB R3T 2N2, Canada
[2] Univ Dundee, Dept Math, Dundee DD1 4HN, Scotland
[3] Univ Manitoba, St Pauls Coll, Winnipeg, MB R3T 2M6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Rational spirals; G(2) Hermite interpolation; HODOGRAPH QUINTIC TRANSITION; 2; CIRCLES; CURVES; LENGTH; PAIR;
D O I
10.1016/j.cagd.2009.03.009
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A construction is given for a planar rational Pythagorean hodograph spiral, which interpolates any two-point G(2) Hermite data that a spiral can match. When the Curvature at one of the points is zero, the construction gives the unique interpolant that is an involute of a rational Pythagorean hodograph curve of the form cubic over linear. Otherwise, the spiral comprises an involute of a Tschirnhausen cubic together with at most two circular arcs. The construction is by explicit formulas in the first case, and requires the Solution of a quadratic equation in the second case. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:733 / 756
页数:24
相关论文
共 50 条
  • [1] Cubic Spiral Transition Matching G2 Hermite End Conditions
    Habib, Zulfiqar
    Sakai, Manabu
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2011, 4 (04) : 525 - 536
  • [2] Planar spirals that match G2 Hermite data
    Meek, DS
    Walton, DJ
    COMPUTER AIDED GEOMETRIC DESIGN, 1998, 15 (02) : 103 - 126
  • [3] Planar spirals that match G2 Hermite data
    Univ of Manitoba, Winnipeg, Canada
    Comput Aided Geom Des, 2 (103-126):
  • [4] G2 planar spiral cubic interpolation to a spiral
    Habib, Z
    Sakai, M
    SIXTH INTERNATIONAL CONFERENCE ON INFORMATION VISUALISATION, PROCEEDINGS, 2002, : 51 - 56
  • [5] G2 Hermite Interpolation by Segmented Spirals
    Zhou, Yuxuan
    Li, Yajuan
    Deng, Chongyang
    MATHEMATICS, 2022, 10 (24)
  • [6] On the G2 Hermite Interpolation Problem with clothoids
    Bertolazzi, Enrico
    Frego, Marco
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 341 : 99 - 116
  • [7] G2 Hermite interpolation with circular precision
    Walton, D. J.
    Meek, D. S.
    COMPUTER-AIDED DESIGN, 2010, 42 (09) : 749 - 758
  • [8] Admissible regions for rational cubic spirals matching G2 Hermite data
    Habib, Zulfiqar
    Sakai, Manabu
    COMPUTER-AIDED DESIGN, 2010, 42 (12) : 1117 - 1124
  • [9] Matching admissible G2 Hermite data by a biarc-based subdivision scheme
    Deng, Chongyang
    Ma, Weiyin
    COMPUTER AIDED GEOMETRIC DESIGN, 2012, 29 (06) : 363 - 378
  • [10] Transition Curve with G2 Hermite Interpolation Condition
    Ahmad, Azhar
    Amat, Abdul Halim
    Ali, Jamaluddin Md
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 250 - 255