A Simple Route to Alloyed Quaternary Nanocrystals Ag-In-Zn-S with Shape and Size Control

被引:49
作者
Gabka, Grzegorz [1 ]
Bujak, Piotr [1 ]
Giedyk, Kamila [1 ]
Ostrowski, Andrzej [1 ]
Malinowska, Karolina [2 ]
Herbich, Jerzy [3 ]
Golec, Barbara [3 ]
Wielgus, Ireneusz [1 ]
Pron, Adam [1 ]
机构
[1] Warsaw Univ Technol, Fac Chem, PL-00664 Warsaw, Poland
[2] Univ Warsaw, Fac Chem, PL-02093 Warsaw, Poland
[3] Polish Acad Sci, Inst Phys Chem, PL-01224 Warsaw, Poland
关键词
LIGHT-EMITTING-DIODES; QUANTUM DOTS; SEMICONDUCTOR NANOCRYSTALS; OPTICAL-PROPERTIES; SOLAR-CELLS; CU2ZNSNS4; NANOCRYSTALS; CUINS2; CDSE NANOCRYSTALS; PHOTOLUMINESCENCE; PRECURSOR;
D O I
10.1021/ic500046m
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
A convenient method of the preparation of alloyed quaternary Ag-In-Zn-S nanocrystals is elaborated, in which a multicomponent mixture of simple and commercially available precursors, namely, silver nitrate, indium(III) chloride, zinc stearate, 1-dodecanethiol, and sulfur, is used with 1-octadecene as a solvent. The formation of quaternary nanocrystals necessitates the use of an auxiliary sulfur precursor, namely, elemental sulfur dissolved in oleylamine, in addition to 1-dodecanethiol. Without this additional precursor binary ZnS nanocrystals are formed. The optimum reaction temperature of 180 degrees C was also established. In these conditions shape, size, and composition of the resulting nanocrystals can be adjusted in a controlled manner by changing the molar ratio of the precursors in the reaction mixture. For low zinc stearate contents anisotropic rodlike (ca.3 nm x 10 nm) and In-rich nanocrystals are obtained. This is caused by a significantly higher reactivity of the indium precursor as compared to the zinc one. With increasing zinc precursor content the reactivities of both precursors become more balanced, and the resulting nanocrystals are smaller (1.5-4.0 nm) and become Zn-rich as evidenced by transmission electron microscopy, X-ray diffraction, and energy-dispersive spectrometry investigations. Simultaneous increases in the zinc and sulfur precursor content result in an enlargement of nanocrystals (2.5 to 5.0 nm) and further increase in the molar ZnS content (up to 0.76). The prepared nanoparticles show stable photoluminescence with the quantum yield up to 37% for In and Zn-rich nanocrystals. Their hydrodynamic diameter in toluene dispersion, determined by dynamic light scattering, is roughly twice larger than the diameter of their inorganic core.
引用
收藏
页码:5002 / 5012
页数:11
相关论文
共 60 条
  • [1] Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications
    Aldakov, Dmitry
    Lefrancois, Aurelie
    Reiss, Peter
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2013, 1 (24) : 3756 - 3776
  • [2] Benoit H., 1953, J PHYS CHEM, V57, P958
  • [3] Semiconductor nanocrystals as fluorescent biological labels
    Bruchez, M
    Moronne, M
    Gin, P
    Weiss, S
    Alivisatos, AP
    [J]. SCIENCE, 1998, 281 (5385) : 2013 - 2016
  • [4] Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor
    Castro, SL
    Bailey, SG
    Raffaelle, RP
    Banger, KK
    Hepp, AF
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (33) : 12429 - 12435
  • [5] Quantum dot bioconjugates for ultrasensitive nonisotopic detection
    Chan, WCW
    Nie, SM
    [J]. SCIENCE, 1998, 281 (5385) : 2016 - 2018
  • [6] Strategies for photoluminescence enhancement of AgInS2 quantum dots and their application as bioimaging probes
    Chang, Jia-Yaw
    Wang, Guo-Quan
    Cheng, Chun-Yi
    Lin, Wei-Xiang
    Hsu, Jen-Chieh
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (21) : 10609 - 10618
  • [7] Highly Emissive and Color-Tunable CuInS2-Based Colloidal Semiconductor Nanocrystals: Off-Stoichiometry Effects and Improved Electroluminescence Performance
    Chen, Bingkun
    Zhong, Haizheng
    Zhang, Wenqing
    Tan, Zhan'ao
    Li, Yongfang
    Yu, Cairan
    Zhai, Tianyou
    Bando, Yoshio
    Yang, Shengyi
    Zou, Bingsuo
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (10) : 2081 - 2088
  • [8] Electroluminescence from single monolayers of nanocrystals in molecular organic devices
    Coe, S
    Woo, WK
    Bawendi, M
    Bulovic, V
    [J]. NATURE, 2002, 420 (6917) : 800 - 803
  • [9] COLVIN VL, 1994, NATURE, V370, P354, DOI 10.1038/370354a0
  • [10] Synthesis, Structural, and Optical Properties of Stable ZnS:Cu,Cl Nanocrystals
    Corrado, Carley
    Jiang, Yu
    Oba, Fadekemi
    Kozina, Mike
    Bridges, Frank
    Zhang, Jin Z.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (16) : 3830 - 3839