VARIATION OF THE RADON TRANSFORM

被引:0
作者
Peters, James V. [1 ]
机构
[1] Long Isl Univ, Dept Math, Brookville, NY 11548 USA
关键词
Radon transform; Kakeya-Besicovitch set;
D O I
10.1216/RMJ-2009-39-3-927
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Estimates are obtained for the variation of the Radon transform. The analysis is motivated in part by Kakeya-Besicovitch sets in the plane.
引用
收藏
页码:927 / 935
页数:9
相关论文
共 50 条
  • [21] Wavelet transform and radon transform on the quaternion Heisenberg group
    He, Jian Xun
    Liu, He Ping
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (04) : 619 - 636
  • [22] Wavelet transform and radon transform on the quaternion Heisenberg group
    Jian Xun He
    He Ping Liu
    [J]. Acta Mathematica Sinica, English Series, 2014, 30 : 619 - 636
  • [23] Wavelet Transform and Radon Transform on the Quaternion Heisenberg Group
    Jian Xun HE
    He Ping LIU
    [J]. Acta Mathematica Sinica(English Series), 2014, 30 (04) : 619 - 636
  • [24] Pattern recognition by means of the Radon transform and the continuous wavelet transform
    Magli, E
    Olmo, G
    Lo Presti, L
    [J]. SIGNAL PROCESSING, 1999, 73 (03) : 277 - 289
  • [25] The Generalized Radon Transform on the Plane, the Inverse Transform, and the Cavalieri Conditions
    D. A. Popov
    [J]. Functional Analysis and Its Applications, 2001, 35 : 270 - 283
  • [26] The Radon transform with finitely many angles 
    Stefanov, Plamen
    [J]. INVERSE PROBLEMS, 2023, 39 (10)
  • [27] DIFFERENTIAL RADON TRANSFORM FOR GAIT RECOGNITION
    Guha, Tanaya
    Ward, Rabab
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 834 - 837
  • [28] Range of the horocyclic radon transform on trees
    Casadio Tarabusi, E
    Cohen, JM
    Colonna, F
    [J]. ANNALES DE L INSTITUT FOURIER, 2000, 50 (01) : 211 - 234
  • [29] The Lagrangian Radon Transform and the Weil Representation
    Marmo, Giuseppe
    Michor, Peter W.
    Neretin, Yury A.
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2014, 20 (02) : 321 - 361
  • [30] THE SUPPORT THEOREM FOR THE GAUSS RADON TRANSFORM
    Becnel, Jeremy J.
    [J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2012, 15 (02)