Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks

被引:407
作者
Audebert, Nicolas [1 ,2 ]
Le Saux, Bertrand [1 ]
Lefevre, Sebastien [2 ]
机构
[1] Off Natl Etud & Rech Aerosp, French Aerosp Lab, F-91761 Palaiseau, France
[2] Univ Bretagne Sud, UMR 6074, IRISA, F-56000 Vannes, France
关键词
Deep learning; Remote sensing; Semantic mapping; Data fusion; IMAGES;
D O I
10.1016/j.isprsjprs.2017.11.011
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
In this work, we investigate various methods to deal with semantic labeling of very high resolution multi modal remote sensing data. Especially, we study how deep fully convolutional networks can be adapted to deal with multi-modal and multi-scale remote sensing data for semantic labeling. Our contributions are threefold: (a) we present an efficient multi-scale approach to leverage both a large spatial context and the high resolution data, (b) we investigate early and late fusion of Lidar and multispectral data, (c) we validate our methods on two public datasets with state-of-the-art results. Our results indicate that late fusion make it possible to recover errors steaming from ambiguous data, while early fusion allows for better joint-feature learning but at the cost of higher sensitivity to missing data. (C) 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:20 / 32
页数:13
相关论文
共 47 条
  • [1] [Anonymous], 2015, IEEE I CONF COMP VIS, DOI DOI 10.1109/ICCV.2015.123
  • [2] [Anonymous], 2015, P IEEE C COMP VIS PA P IEEE C COMP VIS PA P IEEE C COMP VIS PA P IEEE C COMP VIS PA P IEEE C COMP VIS PA P IEEE C COMP VIS PA P IEEE C COMP VIS PA P IEEE C COMP VIS PA
  • [3] [Anonymous], 2011, P 28 INT C MACH LEAR
  • [4] [Anonymous], 2017, P IEEE C COMP VIS PA
  • [5] [Anonymous], 2017, SEGNET DEEP CONVOLUT
  • [6] [Anonymous], 2015, P INT C LEARN REPR S
  • [7] Audebert N, 2016, AS C COMP VIS ACCV16
  • [8] Audebert N, 2017, C COMP VIS PATT REC
  • [9] HOW USEFUL IS REGION-BASED CLASSIFICATION OF REMOTE SENSING IMAGES IN A DEEP LEARNING FRAMEWORK ?
    Audebert, Nicolas
    Le Saux, Bertrand
    Lefevre, Sebastien
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5091 - 5094
  • [10] Processing of Extremely High-Resolution LiDAR and RGB Data: Outcome of the 2015 IEEE GRSS Data Fusion Contest-Part A: 2-D Contest
    Campos-Taberner, Manuel
    Romero-Soriano, Adriana
    Gatta, Carlo
    Camps-Valls, Gustau
    Lagrange, Adrien
    Le Saux, Bertrand
    Beaupere, Anne
    Boulch, Alexandre
    Chan-Hon-Tong, Adrien
    Herbin, Stephane
    Randrianarivo, Hicham
    Ferecatu, Marin
    Shimoni, Michal
    Moser, Gabriele
    Tuia, Devis
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (12) : 5547 - 5559