Anasazi Software for the Numerical Solution of Large-Scale Eigenvalue Problems

被引:66
作者
Baker, C. G. [1 ]
Hetmaniuk, U. L. [1 ]
Lehoucq, R. B. [1 ]
Thornquist, H. K. [1 ]
机构
[1] Sandia Natl Labs, Livermore, CA 94550 USA
来源
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE | 2009年 / 36卷 / 03期
关键词
Algorithms; Design; Performance; Reliability; Theory; Eigenvalue problems; numerical algorithms; generic programming; object-oriented programming; large-scale scientific computing; ALGORITHMS;
D O I
10.1145/1527286.1527287
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Anasazi is a package within the Trilinos software project that provides a framework for the iterative, numerical solution of large-scale eigenvalue problems. Anasazi is written in ANSI C++ and exploits modern software paradigms to enable the research and development of eigensolver algorithms. Furthermore, Anasazi provides implementations for some of the most recent eigensolver methods. The purpose of our article is to describe the design and development of the Anasazi framework. A performance comparison of Anasazi and the popular FORTRAN 77 code ARPACK is given.
引用
收藏
页数:23
相关论文
共 34 条
[1]   Trust-region methods on Riemannian manifolds [J].
Absil, P-A. ;
Baker, C. G. ;
Gallivan, K. A. .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2007, 7 (03) :303-330
[2]  
Anderson E, 1999, LAPACK USERS GUIDE, DOI [10.1137/1.9780898719604, DOI 10.1137/1.9780898719604]
[3]  
[Anonymous], 1992, Numerical Methods for Large Eigenvalue Problems
[4]   A comparison of eigensolvers for large-scale 3D modal analysis using AMG-preconditioned iterative methods [J].
Arbenz, P ;
Hetmaniuk, UL ;
Lehoucq, RB ;
Tuminaro, RS .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 64 (02) :204-236
[5]  
BAKER CG, ANASAZI BLOCK EIGENS
[6]  
BARTLETT R, THYRA INTERFACES ABS
[7]  
Bartlett R.A., 2004, SAND20043268 SAND NA
[8]  
BHARDWAJ M, 2002, P IEEE ACM SUP C BAL, P35
[9]   An updated set of Basic Linear Algebra Subprograms (BLAS) [J].
Blackford, LS ;
Demmel, J ;
Dongarra, J ;
Duff, I ;
Hammarling, S ;
Henry, G ;
Heroux, M ;
Kaufman, L ;
Lumsdaine, A ;
Petitet, A ;
Pozo, R ;
Remington, K ;
Whaley, RC .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2002, 28 (02) :135-151
[10]   REORTHOGONALIZATION AND STABLE ALGORITHMS FOR UPDATING GRAM-SCHMIDT QR FACTORIZATION [J].
DANIEL, JW ;
GRAGG, WB ;
KAUFMAN, L ;
STEWART, GW .
MATHEMATICS OF COMPUTATION, 1976, 30 (136) :772-795