Multi-atlas learner fusion: An efficient segmentation approach for large-scale data

被引:32
作者
Asman, Andrew J. [1 ]
Huo, Yuankai [1 ]
Plassard, Andremd. [2 ]
Landman, Bennett A. [1 ,2 ,3 ,4 ]
机构
[1] Vanderbilt Univ, Elect Engn, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Comp Sci, Nashville, TN 37235 USA
[3] Vanderbilt Univ, Inst Imaging Sci, Nashville, TN 37235 USA
[4] Vanderbilt Univ, Radiol & Radiol Sci, Nashville, TN 37235 USA
关键词
Multi-atlas segmentation; Machine learning; AdaBoost; Multi-atlas learner fusion; STATISTICAL LABEL FUSION; IMAGE SEGMENTATION; DIMENSIONALITY REDUCTION; TISSUE CLASSIFICATION; ALZHEIMERS-DISEASE; BRAIN; PERFORMANCE; REGISTRATION; SELECTION; HIPPOCAMPUS;
D O I
10.1016/j.media.2015.08.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose multi-atlas learner fusion (MLF), a framework for rapidly and accurately replicating the highly accurate, yet computationally expensive, multi-atlas segmentation framework based on fusing local learners. In the largest whole-brain multi-atlas study yet reported, multi-atlas segmentations are estimated for a training set of 3464 MR brain images. Using these multi-atlas estimates we (1) estimate a low-dimensional representation for selecting locally appropriate example images, and (2) build AdaBoost learners that map a weak initial segmentation to the multi-atlas segmentation result. Thus, to segment a new target image we project the image into the low-dimensional space, construct a weak initial segmentation, and fuse the trained, locally selected, learners. The MLF framework cuts the runtime on a modern computer from 36 h down to 3-8 min - a 270x speedup - by completely bypassing the need for deformable atlas-target registrations. Additionally, we (1) describe a technique for optimizing the weak initial segmentation and the AdaBoost learning parameters, (2) quantify the ability to replicate the multi-atlas result with mean accuracies approaching the multi-atlas intra-subject reproducibility on a testing set of 380 images, (3) demonstrate significant increases in the reproducibility of intra-subject segmentations when compared to a state-of-the-art multi-atlas framework on a separate reproducibility dataset, (4) show that under the MLF framework the large-scale data model significantly improve the segmentation over the small-scale model under the MLF framework, and (5) indicate that the MLF framework has comparable performance as state-of-the-art multiatlas segmentation algorithms without using non-local information. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:82 / 91
页数:10
相关论文
共 65 条
[1]   Automated morphological analysis of magnetic resonance brain imaging using spectral analysis [J].
Aljabar, P. ;
Rueckert, D. ;
Crum, W. R. .
NEUROIMAGE, 2008, 43 (02) :225-235
[2]   Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy [J].
Aljabar, P. ;
Heckemann, R. A. ;
Hammers, A. ;
Hajnal, J. V. ;
Rueckert, D. .
NEUROIMAGE, 2009, 46 (03) :726-738
[3]  
[Anonymous], 2010, 16 ANN M ORG HUM BRA
[4]   Combination Strategies in Multi-Atlas Image Segmentation: Application to Brain MR Data [J].
Artaechevarria, Xabier ;
Munoz-Barrutia, Arrate ;
Ortiz-de-Solorzano, Carlos .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (08) :1266-1277
[5]   Statistical label fusion with hierarchical performance models [J].
Asman, Andrew J. ;
Dagley, Alexander S. ;
Landman, Bennett A. .
MEDICAL IMAGING 2014: IMAGE PROCESSING, 2014, 9034
[6]   Non-local statistical label fusion for multi-atlas segmentation [J].
Asman, Andrew J. ;
Landman, Bennett A. .
MEDICAL IMAGE ANALYSIS, 2013, 17 (02) :194-208
[7]   Formulating Spatially Varying Performance in the Statistical Fusion Framework [J].
Asman, Andrew J. ;
Landman, Bennett A. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (06) :1326-1336
[8]   Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain [J].
Avants, B. B. ;
Epstein, C. L. ;
Grossman, M. ;
Gee, J. C. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (01) :26-41
[9]   Laplacian eigenmaps for dimensionality reduction and data representation [J].
Belkin, M ;
Niyogi, P .
NEURAL COMPUTATION, 2003, 15 (06) :1373-1396
[10]   Toward discovery science of human brain function [J].
Biswal, Bharat B. ;
Mennes, Maarten ;
Zuo, Xi-Nian ;
Gohel, Suril ;
Kelly, Clare ;
Smith, Steve M. ;
Beckmann, Christian F. ;
Adelstein, Jonathan S. ;
Buckner, Randy L. ;
Colcombe, Stan ;
Dogonowski, Anne-Marie ;
Ernst, Monique ;
Fair, Damien ;
Hampson, Michelle ;
Hoptman, Matthew J. ;
Hyde, James S. ;
Kiviniemi, Vesa J. ;
Kotter, Rolf ;
Li, Shi-Jiang ;
Lin, Ching-Po ;
Lowe, Mark J. ;
Mackay, Clare ;
Madden, David J. ;
Madsen, Kristoffer H. ;
Margulies, Daniel S. ;
Mayberg, Helen S. ;
McMahon, Katie ;
Monk, Christopher S. ;
Mostofsky, Stewart H. ;
Nagel, Bonnie J. ;
Pekar, James J. ;
Peltier, Scott J. ;
Petersen, Steven E. ;
Riedl, Valentin ;
Rombouts, Serge A. R. B. ;
Rypma, Bart ;
Schlaggar, Bradley L. ;
Schmidt, Sein ;
Seidler, Rachael D. ;
Siegle, Greg J. ;
Sorg, Christian ;
Teng, Gao-Jun ;
Veijola, Juha ;
Villringer, Arno ;
Walter, Martin ;
Wang, Lihong ;
Weng, Xu-Chu ;
Whitfield-Gabrieli, Susan ;
Williamson, Peter ;
Windischberger, Christian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4734-4739