Weakly imposed Dirichlet boundary conditions for the Brinkman model of porous media flow

被引:24
作者
Hansbo, P. [1 ,2 ]
Juntunen, M. [3 ]
机构
[1] Chalmers Univ Technol, Dept Math Sci, SE-41296 Gothenburg, Sweden
[2] Univ Gothenburg, SE-41296 Gothenburg, Sweden
[3] Aalto Univ, Dept Engn Phys & Math, Inst Math, Helsinki 02015, Finland
关键词
Brinkman model; Stokes-Darcy model; Stabilized methods; Finite element; Interior penalty method; Nitsche's method; STOKES;
D O I
10.1016/j.apnum.2008.07.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use low order approximations, piecewise linear, continuous velocities and piecewise constant pressures to compute solutions to Brinkman's equation of porous media flow, applying an edge stabilization term to avoid locking. In order to handle the limiting case of Darcy flow, when only the velocity component normal to the boundary can be prescribed, we impose the boundary conditions weakly using Nitsche's method [J. Nitsche, Uber ein Variationsprinzip zur Losung von Dirichlet-Problemen bei Verwendung von Teilraumen, die keinen Randbedingungen unterworfen sind, Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg 36 (1971) 9-15]. We show that this leads to a stable method for all choices of material parameters. Finally we present some numerical examples verifying the theoretical predictions and showing the effect of the weak imposition of boundary conditions. (C) 2008 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1274 / 1289
页数:16
相关论文
共 11 条
[1]  
[Anonymous], 1995, P 9 INT C FINITE ELE
[2]   Weak imposition of Dirichlet boundary conditions in fluid mechanics [J].
Bazilevs, Y. ;
Hughes, T. J. R. .
COMPUTERS & FLUIDS, 2007, 36 (01) :12-26
[3]  
Brenner S. C., 2007, MATH THEORY FINITE E
[4]   A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty [J].
Burman, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :2012-2033
[5]   Pressure projection Stabilizations for Galerkin approximations of Stokes' and Darcy's problem [J].
Burman, Erik .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (01) :127-143
[6]   A unified stabilized method for Stokes' and Darcy's equations [J].
Burman, Erik ;
Hansbo, Peter .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 198 (01) :35-51
[7]   Continuous interior penalty finite element method for Oseen's equations [J].
Burman, Erik ;
Fernandez, Miguel A. ;
Hansbo, Peter .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (03) :1248-1274
[9]   A robust finite element method for Darcy-Stokes flow [J].
Mardal, KA ;
Tai, XC ;
Winther, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (05) :1605-1631
[10]  
Nitsche JA., 1971, ABH MATH SEM HAMBURG, V36, P9, DOI DOI 10.1007/BF02995904