Computational Security of Quantum Encryption

被引:19
作者
Alagic, Gorjan [1 ]
Broadbent, Anne [2 ]
Fefferman, Bill [3 ]
Gagliardoni, Tommaso [4 ]
Schaffner, Christian [5 ]
Jules, Michael St. [2 ]
机构
[1] Univ Copenhagen, Dept Math Sci, Copenhagen, Denmark
[2] Univ Ottawa, Dept Math & Stat, Ottawa, ON, Canada
[3] Univ Maryland, Joint Ctr QuICS, College Pk, MD 20742 USA
[4] Tech Univ Darmstadt, Cryptoplex, Darmstadt, Germany
[5] Univ Amsterdam & CWI, QuSoft, Amsterdam, Netherlands
来源
INFORMATION THEORETIC SECURITY, ICITS 2016 | 2016年 / 10015卷
关键词
D O I
10.1007/978-3-319-49175-2_3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Quantum-mechanical devices have the potential to transform cryptography. Most research in this area has focused either on the information-theoretic advantages of quantum protocols or on the security of classical cryptographic schemes against quantum attacks. In this work, we initiate the study of another relevant topic: the encryption of quantum data in the computational setting. In this direction, we establish quantum versions of several fundamental classical results. First, we develop natural definitions for private-key and public-key encryption schemes for quantum data. We then define notions of semantic security and indistinguishability, and, in analogy with the classical work of Gold-wasser and Micali, show that these notions are equivalent. Finally, we construct secure quantum encryption schemes from basic primitives. In particular, we show that quantum-secure one-way functions imply INDCCA1-secure symmetric-key quantum encryption, and that quantumsecure trapdoor one-way permutations imply semantically- secure publickey quantum encryption.
引用
收藏
页码:47 / 71
页数:25
相关论文
共 50 条
[31]  
Gentry C, 2008, ACM S THEORY COMPUT, P197
[32]  
Goldreich O., 1989, Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, P25, DOI 10.1145/73007.73010
[33]   HOW TO CONSTRUCT RANDOM FUNCTIONS [J].
GOLDREICH, O ;
GOLDWASSER, S ;
MICALI, S .
JOURNAL OF THE ACM, 1986, 33 (04) :792-807
[34]   PROBABILISTIC ENCRYPTION [J].
GOLDWASSER, S ;
MICALI, S .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1984, 28 (02) :270-299
[35]   A pseudorandom generator from any one-way function [J].
Hästad, J ;
Impagliazzo, R ;
Levin, LA ;
Luby, M .
SIAM JOURNAL ON COMPUTING, 1999, 28 (04) :1364-1396
[36]   Randomizing quantum states: Constructions and applications [J].
Hayden, P ;
Leung, D ;
Shor, PW ;
Winter, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 250 (02) :371-391
[37]   Statistical zero knowledge and quantum one-way functions [J].
Kashefi, Elham ;
Kerenidis, Iordanis .
THEORETICAL COMPUTER SCIENCE, 2007, 378 (01) :101-116
[38]  
Leung DW, 2002, QUANTUM INF COMPUT, V2, P14
[39]  
Mosca M, 2010, CONTEMP MATH, V523, P35
[40]  
NIST, 2021, Post-quantum cryptography(pqc)