Computational Security of Quantum Encryption

被引:19
作者
Alagic, Gorjan [1 ]
Broadbent, Anne [2 ]
Fefferman, Bill [3 ]
Gagliardoni, Tommaso [4 ]
Schaffner, Christian [5 ]
Jules, Michael St. [2 ]
机构
[1] Univ Copenhagen, Dept Math Sci, Copenhagen, Denmark
[2] Univ Ottawa, Dept Math & Stat, Ottawa, ON, Canada
[3] Univ Maryland, Joint Ctr QuICS, College Pk, MD 20742 USA
[4] Tech Univ Darmstadt, Cryptoplex, Darmstadt, Germany
[5] Univ Amsterdam & CWI, QuSoft, Amsterdam, Netherlands
来源
INFORMATION THEORETIC SECURITY, ICITS 2016 | 2016年 / 10015卷
关键词
D O I
10.1007/978-3-319-49175-2_3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Quantum-mechanical devices have the potential to transform cryptography. Most research in this area has focused either on the information-theoretic advantages of quantum protocols or on the security of classical cryptographic schemes against quantum attacks. In this work, we initiate the study of another relevant topic: the encryption of quantum data in the computational setting. In this direction, we establish quantum versions of several fundamental classical results. First, we develop natural definitions for private-key and public-key encryption schemes for quantum data. We then define notions of semantic security and indistinguishability, and, in analogy with the classical work of Gold-wasser and Micali, show that these notions are equivalent. Finally, we construct secure quantum encryption schemes from basic primitives. In particular, we show that quantum-secure one-way functions imply INDCCA1-secure symmetric-key quantum encryption, and that quantumsecure trapdoor one-way permutations imply semantically- secure publickey quantum encryption.
引用
收藏
页码:47 / 71
页数:25
相关论文
共 50 条
[21]   Quantum cryptography beyond quantum key distribution [J].
Broadbent, Anne ;
Schaffner, Christian .
DESIGNS CODES AND CRYPTOGRAPHY, 2016, 78 (01) :351-382
[22]   Quantum Homomorphic Encryption for Circuits of Low T-gate Complexity [J].
Broadbent, Anne ;
Jeffery, Stacey .
ADVANCES IN CRYPTOLOGY, PT II, 2015, 9216 :609-629
[23]   Delegating private quantum computations [J].
Broadbent, Anne .
CANADIAN JOURNAL OF PHYSICS, 2015, 93 (09) :941-946
[24]  
Broadbent A, 2013, LECT NOTES COMPUT SC, V8043, P344, DOI 10.1007/978-3-642-40084-1_20
[25]   Universal Blind Quantum Computation [J].
Broadbent, Anne ;
Fitzsimons, Joseph ;
Kashefi, Elham .
2009 50TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE: FOCS 2009, PROCEEDINGS, 2009, :517-526
[26]   Entropic security in quantum cryptography [J].
Desrosiers, Simon Pierre .
QUANTUM INFORMATION PROCESSING, 2009, 8 (04) :331-345
[27]   NEW DIRECTIONS IN CRYPTOGRAPHY [J].
DIFFIE, W ;
HELLMAN, ME .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1976, 22 (06) :644-654
[28]  
Dupuis F, 2012, LECT NOTES COMPUT SC, V7417, P794
[29]  
Dupuis F, 2010, LECT NOTES COMPUT SC, V6223, P685, DOI 10.1007/978-3-642-14623-7_37
[30]   Semantic Security and Indistinguishability in the Quantum World [J].
Gagliardoni, Tommaso ;
Huelsing, Andreas ;
Schaffner, Christian .
ADVANCES IN CRYPTOLOGY (CRYPTO 2016), PT III, 2016, 9816 :60-89