Computational Security of Quantum Encryption

被引:19
作者
Alagic, Gorjan [1 ]
Broadbent, Anne [2 ]
Fefferman, Bill [3 ]
Gagliardoni, Tommaso [4 ]
Schaffner, Christian [5 ]
Jules, Michael St. [2 ]
机构
[1] Univ Copenhagen, Dept Math Sci, Copenhagen, Denmark
[2] Univ Ottawa, Dept Math & Stat, Ottawa, ON, Canada
[3] Univ Maryland, Joint Ctr QuICS, College Pk, MD 20742 USA
[4] Tech Univ Darmstadt, Cryptoplex, Darmstadt, Germany
[5] Univ Amsterdam & CWI, QuSoft, Amsterdam, Netherlands
来源
INFORMATION THEORETIC SECURITY, ICITS 2016 | 2016年 / 10015卷
关键词
D O I
10.1007/978-3-319-49175-2_3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Quantum-mechanical devices have the potential to transform cryptography. Most research in this area has focused either on the information-theoretic advantages of quantum protocols or on the security of classical cryptographic schemes against quantum attacks. In this work, we initiate the study of another relevant topic: the encryption of quantum data in the computational setting. In this direction, we establish quantum versions of several fundamental classical results. First, we develop natural definitions for private-key and public-key encryption schemes for quantum data. We then define notions of semantic security and indistinguishability, and, in analogy with the classical work of Gold-wasser and Micali, show that these notions are equivalent. Finally, we construct secure quantum encryption schemes from basic primitives. In particular, we show that quantum-secure one-way functions imply INDCCA1-secure symmetric-key quantum encryption, and that quantumsecure trapdoor one-way permutations imply semantically- secure publickey quantum encryption.
引用
收藏
页码:47 / 71
页数:25
相关论文
共 50 条
[1]  
Aaronson S, 2012, STOC'12: PROCEEDINGS OF THE 2012 ACM SYMPOSIUM ON THEORY OF COMPUTING, P41
[2]   Quantum Copy-Protection and Quantum Money [J].
Aaronson, Scott .
PROCEEDINGS OF THE 24TH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, 2009, :229-242
[3]  
Aharonov D., 1998, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, P20, DOI 10.1145/276698.276708
[4]   Using quantum key distribution for cryptographic purposes: A survey [J].
Alleaume, R. ;
Branciard, C. ;
Bouda, J. ;
Debuisschert, T. ;
Dianati, M. ;
Gisin, N. ;
Godfrey, M. ;
Grangier, P. ;
Laenger, T. ;
Luetkenhaus, N. ;
Monyk, C. ;
Painchault, P. ;
Peev, M. ;
Poppe, A. ;
Pornin, T. ;
Rarity, J. ;
Renner, R. ;
Ribordy, G. ;
Riguidel, M. ;
Salvail, L. ;
Shields, A. ;
Weinfurter, H. ;
Zeilinger, A. .
THEORETICAL COMPUTER SCIENCE, 2014, 560 :62-81
[5]   Private quantum channels [J].
Ambainis, A ;
Mosca, M ;
Tapp, A ;
de Wolf, R .
41ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2000, :547-553
[6]  
[Anonymous], 2004, FDN CRYPTOGRAPHY BAS
[7]  
[Anonymous], IEEE T INF THEORY
[8]  
[Anonymous], ARXIVQUANTPH070115
[9]  
[Anonymous], P SPIE
[10]  
[Anonymous], LNCS