Moment stability via resolvent operators of fractional stochastic differential inclusions driven by fractional Brownian motion

被引:29
作者
Tamilalagan, P. [1 ]
Balasubramaniam, P. [1 ]
机构
[1] Deemed Univ, Gandhigram Rural Inst, Dept Math, Gandhigram 624302, Tamil Nadu, India
关键词
Asymptotic stability; Fixed point theorem; Fractional Brownian motion; Fractional calculus; Stochastic differential inclusions; INTEGRODIFFERENTIAL INCLUSIONS; EVOLUTION-EQUATIONS; INFINITE DELAY; CONTROLLABILITY; EXISTENCE;
D O I
10.1016/j.amc.2017.02.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this manuscript, we consider a class of fractional stochastic differential inclusions driven by fractional Brownian motion in Hilbert space with Hurst parameter (H) over cap is an element of (1/2, 1). Sufficient conditions for the existence and asymptotic stability of mild solutions are derived in mean square moment by employing fractional calculus, analytic resolvent operators and Bohnenblust-Karlin's fixed point theorem. The effectiveness of the obtained theoretical results is illustrated by an example. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:299 / 307
页数:9
相关论文
共 39 条
  • [11] Existence Results for a Fractional Equation with State-Dependent Delay
    Carvalho dos Santos, Jose Paulo
    Cuevas, Claudio
    de Andrade, Bruno
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2011,
  • [12] A comment on measuring the Hurst exponent of financial time series
    Couillard, M
    Davison, M
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 348 : 404 - 418
  • [13] Deimling K., 1992, de Gruyter Ser. Nonlinear Anal. Appl, DOI DOI 10.1515/9783110874228
  • [14] Dos Santos J.P.C., 2013, Communications in Mathematical Analysis, V14, P59
  • [15] Stochastic calculus for fractional Brownian motion - I. Theory
    Duncan, TE
    Hu, YZ
    Pasik-Duncan, B
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (02) : 582 - 612
  • [16] Stability analysis by Krasnoselskii's fixed point theorem for nonlinear fractional differential equations
    Ge, Fudong
    Kou, Chunhai
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 308 - 316
  • [17] GUENDOUZI T, 2012, ROMAI J, V8, P103
  • [18] FEYNMAN-KAC FORMULA FOR THE HEAT EQUATION DRIVEN BY FRACTIONAL NOISE WITH HURST PARAMETER H < 1/2
    Hu, Yaozhong
    Lu, Fei
    Nualarti, David
    [J]. ANNALS OF PROBABILITY, 2012, 40 (03) : 1041 - 1068
  • [19] Kilbas A A., 2006, N HOLLAND MATH STUDI
  • [20] LASOTA A, 1965, B ACAD POL SCI SMAP, V13, P781