Fully Automatic Hippocampus Segmentation and Classification in Alzheimer's Disease and Mild Cognitive Impairment Applied on Data From ADNI

被引:245
作者
Chupin, Marie [1 ,3 ]
Gerardin, Emilie [1 ,3 ]
Cuingnet, Remi [1 ,2 ,3 ]
Boutet, Claire [1 ,3 ,5 ]
Lemieux, Louis [6 ]
Lehericy, Stephane [1 ,3 ,4 ,5 ]
Benali, Habib [2 ]
Garnero, Line [1 ,3 ]
Colliot, Olivier [1 ,3 ]
机构
[1] Univ Paris 06, CNRS, UMR S7225, F-75013 Paris, France
[2] Univ Paris 06, INSERM, UMR S 678, F-75013 Paris, France
[3] INSERM, U975, Paris, France
[4] Hop La Pitie Salpetriere, Ctr Neuroimaging Res, CENIR, Paris, France
[5] Hop La Pitie Salpetriere, Dept Neuroradiol, Paris, France
[6] UCL, Dept Clin & Expt Epilepsy, Inst Neurol, London WC1E 6BT, England
基金
英国医学研究理事会;
关键词
segmentation; classification; Alzheimer's disease; MCI; ENTORHINAL CORTEX; MRI; VALIDATION; DEMENTIA; BRAIN; AMYGDALA; ATROPHY; FUSION; MODEL;
D O I
10.1002/hipo.20626
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The hippocampus is among the first structures affected in Alzheimer's disease (AD). Hippocampal magnetic resonance imaging volumetry is a potential biomarker for AD but is hindered by the limitations of manual segmentation. We proposed a fully automatic method using probabilistic and anatomical priors for hippocampus segmentation. Probabilistic information is derived from 16 young controls and anatomical knowledge is modeled with automatically detected landmarks. The results were previously evaluated by comparison with manual segmentation on data from the 16 young healthy controls, with a leave-one-out strategy, and eight patients with AD. High accuracy was found for both groups (volume error 6 and 7%, overlap 87 and 86%, respectively). in this article, the method was used to segment 145 patients with AD, 294 patients with mild cognitive impairment (MCI), and 166 elderly normal subjects from the Alzheimer's Disease Neuroimaging Initiative database. On the basis of a qualitative rating protocol, the segmentation proved acceptable in 94% of the cases. We used the obtained hippocampal volumes to automatically discriminate between AD patients, MCI patients, and elderly controls. The classification proved accurate: 76% of the patients with AD and 71% of the MCI converting to AD before 18 months were correctly classified with respect to the elderly controls, using only hippocampal volume. (C) 2009 Wiley-Liss, Inc.
引用
收藏
页码:579 / 587
页数:9
相关论文
共 24 条
[1]   Unified segmentation [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2005, 26 (03) :839-851
[2]   A comparison of methods for the automated calculation of volumes and atrophy rates in the hippocampus [J].
Barnes, J. ;
Foster, J. ;
Boyes, R. G. ;
Pepple, T. ;
Moore, E. K. ;
Schott, J. M. ;
Frost, C. ;
Scahill, R. I. ;
Fox, N. C. .
NEUROIMAGE, 2008, 40 (04) :1655-1671
[3]   Fusion of spatial relationships for guiding recognition, example of brain structure recognition in 3D MRI [J].
Bloch, I ;
Colliot, O ;
Camara, O ;
Géraud, T .
PATTERN RECOGNITION LETTERS, 2005, 26 (04) :449-457
[4]   STAGING OF ALZHEIMERS-DISEASE-RELATED NEUROFIBRILLARY CHANGES [J].
BRAAK, H ;
BRAAK, E .
NEUROBIOLOGY OF AGING, 1995, 16 (03) :271-278
[5]   Atlas-based hippocampus segmentation in Alzheimer's disease and mild cognitive impairment [J].
Carmichael, OT ;
Aizenstein, HA ;
Davis, SW ;
Becker, JT ;
Thompson, PM ;
Meltzer, CC ;
Liu, YX .
NEUROIMAGE, 2005, 27 (04) :979-990
[6]   Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: Method and validation [J].
Chupin, M. ;
Hammers, A. ;
Liu, R. S. N. ;
Colliot, O. ;
Burdett, J. ;
Bardinet, E. ;
Duncan, J. S. ;
Garnero, L. ;
Lemieux, L. .
NEUROIMAGE, 2009, 46 (03) :749-761
[7]  
CHUPIN M, 2008, P IEEE INT S BIOM IM, P97
[8]   Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala:: Method and validation on controls and patients with Alzheimer's disease [J].
Chupin, Marie ;
Mukuna-Bantumbakulu, A. Romain ;
Hasboun, Dominique ;
Bardinet, Eric ;
Baillet, Sylvain ;
Kinkingnehun, Serge ;
Lemieux, Louis ;
Dubois, Bruno ;
Garnero, Line .
NEUROIMAGE, 2007, 34 (03) :996-1019
[9]   Discrimination between Alzheimer disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus [J].
Colliot, Olivier ;
Chetelat, Gael ;
Chupin, Marie ;
Desgranges, Beatrice ;
Magnin, Benoit ;
Benali, Habib ;
Dubois, Bruno ;
Garnero, Line ;
Eustache, Francis ;
Lehericy, Stephane .
RADIOLOGY, 2008, 248 (01) :194-201
[10]   Automated hippocampal segmentation by regional fluid registration of serial MRI: Validation and application in Alzheimer's disease [J].
Crum, WR ;
Scahill, RI ;
Fox, NC .
NEUROIMAGE, 2001, 13 (05) :847-855