Chloroplastic thioredoxin-f and thioredoxin-m1/4 play important roles in brassinosteroids-induced changes in CO2 assimilation and cellular redox homeostasis in tomato

被引:34
作者
Cheng, Fei [1 ]
Zhou, Yan-Hong [1 ]
Xia, Xiao-Jian [1 ]
Shi, Kai [1 ]
Zhou, Jie [1 ]
Yu, Jing-Quan [1 ,2 ]
机构
[1] Zhejiang Univ, Dept Hort, Hangzhou 310058, Zhejiang, Peoples R China
[2] Agr Minist China, Key Lab Hort Plants Growth Dev & Qual Improvement, Hangzhou 310058, Zhejiang, Peoples R China
关键词
Antioxidant; Benson-Calvin cycle; chloroplast; 2-Cys peroxiredoxin; glutathione; photosynthesis; NADP-MALATE DEHYDROGENASE; REDUCTIVE ACTIVATION; ARABIDOPSIS-THALIANA; FERREDOXIN/THIOREDOXIN SYSTEM; CHLAMYDOMONAS-REINHARDTII; PLASTIDIAL THIOREDOXINS; FUNDAMENTAL PROCESSES; SPINACH-CHLOROPLASTS; HYDROGEN-PEROXIDE; CUCUMIS-SATIVUS;
D O I
10.1093/jxb/eru207
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Chloroplast thioredoxins (TRXs) and glutathione function as redox messengers in the regulation of photosynthesis. In this work, the roles of chloroplast TRXs in brassinosteroids (BRs)-induced changes in cellular redox homeostasis and CO2 assimilation were studied in the leaves of tomato plants. BRs-deficient d(boolean AND im) plants showed decreased transcripts of TRX-f, TRX-m2, TRX-m1/4, and TRX-x, while exogenous BRs significantly induced CO2 assimilation and the expression of TRX-f, TRX-m2, TRX-m1/4, and TRX-x. Virus-induced gene silencing (VIGS) of the chloroplast TRX-f, TRX-m2, TRX-m1/4, and TRX-y genes individually increased membrane lipid peroxidation and accumulation of 2-Cys peroxiredoxin dimers, and decreased the activities of the ascorbate-glutathione cycle enzymes and the ratio of reduced glutathione to oxidized glutathione (GSH/GSSG) in the leaves. Furthermore, partial silencing of TRX-f, TRX-m2, TRXm1/4, and TRX-y resulted in decreased expression of genes involved in the Benson-Calvin cycle and decreased activity of the associated enzymes. Importantly, the BRs-induced increase in CO2 assimilation and the increased expression and activities of antioxidant-and photosynthesis-related genes and enzymes were compromised in the partially TRX-f-and TRX-m1/4-silenced plants. All of these results suggest that TRX-f and TRX-m1/4 are involved in the BRs-induced changes in CO2 assimilation and cellular redox homeostasis in tomato.
引用
收藏
页码:4335 / 4347
页数:13
相关论文
共 70 条
[1]   Thioredoxin-linked proteins are reduced during germination of Medicago truncatula seeds [J].
Alkhalfioui, Fatima ;
Renard, Michelle ;
Vensel, William H. ;
Wong, Joshua ;
Tanaka, Charlene K. ;
Hurkman, William J. ;
Buchanan, Bob B. ;
Montrichard, Francoise .
PLANT PHYSIOLOGY, 2007, 144 (03) :1559-1579
[2]   Plastidial Thioredoxin z Interacts with Two Fructokinase-Like Proteins in a Thiol-Dependent Manner: Evidence for an Essential Role in Chloroplast Development in Arabidopsis and Nicotiana benthamiana [J].
Arsova, Borjana ;
Hoja, Ursula ;
Wimmelbacher, Matthias ;
Greiner, Eva ;
Ustun, Suayib ;
Melzer, Michael ;
Petersen, Kerstin ;
Lein, Wolfgang ;
Boernke, Frederik .
PLANT CELL, 2010, 22 (05) :1498-1515
[3]   A complete ferredoxin/thioredoxin system regulates fundamental processes in amyloplasts [J].
Balmer, Y ;
Vensel, WH ;
Cai, N ;
Manieri, W ;
Schürmann, P ;
Hurkman, WJ ;
Buchanan, BB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (08) :2988-2993
[4]   Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria [J].
Balmer, Y ;
Vensel, WH ;
Tanaka, CK ;
Hurkman, WJ ;
Gelhaye, E ;
Rouhier, N ;
Jacquot, JP ;
Manieri, W ;
Schüurmann, P ;
Droux, M ;
Buchanan, BB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (08) :2642-2647
[5]   Proteomics gives insight into the regulatory function of chloroplast thioredoxins [J].
Balmer, Y ;
Koller, A ;
del Val, G ;
Manieri, W ;
Schürmann, P ;
Buchanan, BB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (01) :370-375
[6]   Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress [J].
Bartoli, Carlos G. ;
Casalongue, Claudia A. ;
Simontacchi, Marcela ;
Marquez-Garcia, Belen ;
Foyer, Christine H. .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2013, 94 :73-88
[7]   Plant thioredoxins: the multiplicity conundrum [J].
Baumann, U ;
Juttner, J .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2002, 59 (06) :1042-1057
[8]   The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis [J].
Bishop, GJ ;
Nomura, T ;
Yokota, T ;
Harrison, K ;
Noguchi, T ;
Fujioka, S ;
Takatsuto, S ;
Jones, JDG ;
Kamiya, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (04) :1761-1766
[9]   Redox regulation: A broadening horizon [J].
Buchanan, BB ;
Balmer, Y .
ANNUAL REVIEW OF PLANT BIOLOGY, 2005, 56 :187-220
[10]   Abnormal chloroplast development and growth inhibition in rice thioredoxin m knock-down plants [J].
Chi, Yong Hun ;
Moon, Jeong Chan ;
Park, Jin Ho ;
Kim, Ho-Seung ;
Zulfugarov, Ismayil S. ;
Fanata, Wahyu Indra ;
Jang, Ho Hee ;
Lee, Jung Ro ;
Lee, Young Mee ;
Kim, Sun Tae ;
Chung, Yong-Yoon ;
Lim, Chae Oh ;
Kim, Jae-Yean ;
Yun, Dae-Jin ;
Lee, Choon-Hwan ;
Lee, Kyun Oh ;
Lee, Sang Yeol .
PLANT PHYSIOLOGY, 2008, 148 (02) :808-817