Hybrid resonance of Maxwell's equations in slab geometry

被引:18
作者
Despres, Bruno [1 ]
Imbert-Gerard, Lise-Marie [1 ]
Weder, Ricardo [2 ]
机构
[1] Univ Paris 06, Lab Jacques Louis Lions, F-75252 Paris 05, France
[2] Univ Nacl Autonoma Mexico, Inst Invest & Matemat Aplicadas & Sistemas, Dept Fis Matemat, Mexico City 01000, DF, Mexico
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2014年 / 101卷 / 05期
关键词
Maxwell equations; Anisotropic dielectric tensor; Hybrid resonance; Resonant heating; Limit absorption principle; WAVES;
D O I
10.1016/j.matpur.2013.10.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hybrid resonance is a physical mechanism for the heating of a magnetic plasma. In our context hybrid resonance is a solution of the time harmonic Maxwell's equations with smooth coefficients, where the dielectric tensor is a non-diagonal Hermitian matrix. The main part of this work is dedicated to the construction and analysis of a mathematical solution of the hybrid resonance with the limit absorption principle. We prove that the limit solution is singular: it consists of a Dirac mass at the origin plus a principal. value and a smooth square integrable function. The formula obtained for the plasma heating is directly related to the singularity. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:623 / 659
页数:37
相关论文
共 38 条
[1]  
Abramowitz M., 1972, Handbook on Mathematical Functions with Formulas, Graphs, and Mathematical Tables
[2]  
[Anonymous], 1992, Boundary problems of function theory and their application to mathematical physics
[3]  
[Anonymous], 1953, Grundzuge einer allgemeinen Theorie der linearen Integralgleichungen
[4]  
Bart G. R., 1973, SIAM Journal on Mathematical Analysis, V4, P609, DOI 10.1137/0504053
[5]  
Bateman H., 1953, Higher Transcendental Functions: Volume 1, 2
[6]   RADIATION CONDITION FOR A NON-SMOOTH INTERFACE BETWEEN A DIELECTRIC AND A METAMATERIAL [J].
Bonnet-Ben Dhia, Anne-Sophie ;
Chesnel, Lucas ;
Claeys, Xavier .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (09) :1629-1662
[7]  
Bouche D., 1996, ASYMPTOTIC METHODS E
[8]  
Brambilla M., 1998, INT SER MONOGR PHYS
[9]  
Budden K.G., 1961, Radio Waves in the Ionosphere, Vfirst
[10]   PLASMA OSCILLATIONS [J].
CASE, KM .
ANNALS OF PHYSICS, 1959, 7 (03) :349-364