Existence Results for Fractional Evolution Systems with Riemann-Liouville Fractional Derivatives and Nonlocal Conditions

被引:3
|
作者
Kalamani, P. [1 ]
Arjunan, M. Mallika [1 ]
Mallika, D. [2 ]
Baleanu, D. [3 ,4 ]
机构
[1] CBM Coll, Dept Math, Coimbatore 641042, Tamil Nadu, India
[2] Hindusthan Coll Arts & Sci, Dept Math, Coimbatore 641028, Tamil Nadu, India
[3] Cankaya Univ, Dept Math, Fac Arts & Sci, TR-06530 Ankara, Turkey
[4] Turkey & Inst Space Sci, Magurele, Romania
关键词
Fractional order integro-differential equations; Riemann-Liouville fractional derivatives; fixed point; semigroup theory; NEUTRAL DIFFERENTIAL-EQUATIONS; INTEGRODIFFERENTIAL EQUATIONS; CAUCHY-PROBLEM; UNIQUENESS; CONTROLLABILITY; INCLUSIONS; OPERATORS;
D O I
10.3233/FI-2017-1506
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Based on concepts for semigroup theory, fractional calculus, Banach contraction principle and Krasnoselskii fixed point theorem (FPT), this manuscript is principally involved with existence results of Riemann-Liouville (RL) fractional neutral integro-differential systems (FNIDS) with nonlocal conditions (NLCs) in Banach spaces. An example is offered to demonstrate the theoretical concepts.
引用
收藏
页码:487 / 504
页数:18
相关论文
共 50 条
  • [41] System of Riemann-Liouville fractional differential equations with nonlocal boundary conditions: Existence, uniqueness, and multiplicity of solutions
    Padhi, Seshadev
    Prasad, B. S. R., V
    Mahendru, Divya
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (10) : 8125 - 8149
  • [42] Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives
    Heymans, Nicole
    Podlubny, Igor
    RHEOLOGICA ACTA, 2006, 45 (05) : 765 - 771
  • [43] Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions
    Passary, Donny
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    AIMS MATHEMATICS, 2024, 9 (01): : 218 - 239
  • [44] RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS WITH FRACTIONAL BOUNDARY CONDITIONS
    Ahmad, Bashir
    Nieto, Juan J.
    FIXED POINT THEORY, 2012, 13 (02): : 329 - 336
  • [45] Boundary Controllability of Riemann-Liouville Fractional Semilinear Evolution Systems
    Tajani, Asmae
    El Alaoui, Fatima-Zahrae
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 198 (02) : 767 - 780
  • [46] APPROXIMATE CONTROLLABILITY OF RIEMANN-LIOUVILLE FRACTIONAL STOCHASTIC EVOLUTION SYSTEMS
    Yang, He
    Li, Yongxiang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (05): : 2809 - 2826
  • [47] Regional controllability results for Riemann-Liouville fractional control systems
    Tajani, A.
    El Alaoui, F. -z.
    RESULTS IN CONTROL AND OPTIMIZATION, 2022, 7
  • [48] Systems of Riemann-Liouville Fractional Differential Equations with ρ-Laplacian Operators and Nonlocal Coupled Boundary Conditions
    Tudorache, Alexandru
    Luca, Rodica
    FRACTAL AND FRACTIONAL, 2022, 6 (10)
  • [49] Existence and approximate controllability of Riemann-Liouville fractional integrodifferential systems with damping
    Haq, Abdul
    Sukavanam, N.
    CHAOS SOLITONS & FRACTALS, 2020, 139 (139)
  • [50] Sequential Riemann-Liouville and Hadamard-Caputo Fractional Differential Systems with Nonlocal Coupled Fractional Integral Boundary Conditions
    Kiataramkul, Chanakarn
    Yukunthorn, Weera
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    AXIOMS, 2021, 10 (03)