Existence Results for Fractional Evolution Systems with Riemann-Liouville Fractional Derivatives and Nonlocal Conditions

被引:3
作者
Kalamani, P. [1 ]
Arjunan, M. Mallika [1 ]
Mallika, D. [2 ]
Baleanu, D. [3 ,4 ]
机构
[1] CBM Coll, Dept Math, Coimbatore 641042, Tamil Nadu, India
[2] Hindusthan Coll Arts & Sci, Dept Math, Coimbatore 641028, Tamil Nadu, India
[3] Cankaya Univ, Dept Math, Fac Arts & Sci, TR-06530 Ankara, Turkey
[4] Turkey & Inst Space Sci, Magurele, Romania
关键词
Fractional order integro-differential equations; Riemann-Liouville fractional derivatives; fixed point; semigroup theory; NEUTRAL DIFFERENTIAL-EQUATIONS; INTEGRODIFFERENTIAL EQUATIONS; CAUCHY-PROBLEM; UNIQUENESS; CONTROLLABILITY; INCLUSIONS; OPERATORS;
D O I
10.3233/FI-2017-1506
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Based on concepts for semigroup theory, fractional calculus, Banach contraction principle and Krasnoselskii fixed point theorem (FPT), this manuscript is principally involved with existence results of Riemann-Liouville (RL) fractional neutral integro-differential systems (FNIDS) with nonlocal conditions (NLCs) in Banach spaces. An example is offered to demonstrate the theoretical concepts.
引用
收藏
页码:487 / 504
页数:18
相关论文
共 30 条
[21]   NONLOCAL CAUCHY PROBLEMS FOR FRACTIONAL EVOLUTION EQUATIONS INVOLVING VOLTERRA-FREDHOLM TYPE INTEGRAL OPERATORS [J].
Wang, Jinrong ;
Wei, Wei ;
Feckan, Michal .
MISKOLC MATHEMATICAL NOTES, 2012, 13 (01) :127-147
[22]   Abstract Cauchy problem for fractional differential equations [J].
Wang, JinRong ;
Zhou, Yong ;
Feckan, Michal .
NONLINEAR DYNAMICS, 2013, 71 (04) :685-700
[23]   Approximate controll ability of Riemann-Liouville fractional differential inclusions [J].
Yang, Min ;
Wang, Qiru .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 274 :267-281
[24]   A generalized Gronwall inequality and its application to a fractional differential equation [J].
Ye, Haiping ;
Gao, Jianming ;
Ding, Yongsheng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (02) :1075-1081
[25]   Tea Category Identification Using a Novel Fractional Fourier Entropy and Jaya Algorithm [J].
Zhang, Yudong ;
Yang, Xiaojun ;
Cattani, Carlo ;
Rao, Ravipudi Venkata ;
Wang, Shuihua ;
Phillips, Preetha .
ENTROPY, 2016, 18 (03)
[26]  
Zhou Y., 2014, BIOTECHNOL BIOFUELS, DOI DOI 10.1186/s13068-016-0449-6
[27]   EXISTENCE OF MILD SOLUTIONS FOR FRACTIONAL EVOLUTION EQUATIONS [J].
Zhou, Yong ;
Zhang, Lu ;
Shen, Xiao Hui .
JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2013, 25 (04) :557-586
[28]   Existence of mild solutions for fractional neutral evolution equations [J].
Zhou, Yong ;
Jiao, Feng .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (03) :1063-1077
[29]   Existence and uniqueness for fractional neutral differential equations with infinite delay [J].
Zhou, Yong ;
Jiao, Feng ;
Li, Jing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) :3249-3256
[30]   Existence and uniqueness for p-type fractional neutral differential equations [J].
Zhou, Yong ;
Jiao, Feng ;
Li, Jing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) :2724-2733