Discrepancy of randomly sampled sequences of reals

被引:9
作者
Weber, M
机构
[1] Univ Strasbourg 1, IRMA, F-67084 Strasbourg, France
[2] CNRS, F-67084 Strasbourg, France
关键词
metric entropy method; diophantine approximation; sampled subsequences; i.i.d; sums; discrepancy;
D O I
10.1002/mana.200310184
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We estimate the discrepancy of (nx) when n is sampled by a random walk and give examples involving the diophantine approximation properties of x. The proof relies upon the combination of the metric entropy method and the Erdos-Turan inequality. (C) 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:105 / 110
页数:6
相关论文
共 13 条
[1]   ON SUM SIGMA [NALPHA]-T AND NUMERICAL INTEGRATION [J].
HABER, S ;
OSGOOD, CF .
PACIFIC JOURNAL OF MATHEMATICS, 1969, 31 (02) :383-&
[2]  
HARMAN G, 1988, LONDON MATH SOC MONO
[3]  
HOLEWIJN PJ, 1973, Z WAHRSCHEINLICHKEIT, V26, P33
[4]  
Kawata T., 1972, Fourier analysis in probability theory
[5]  
Kesten, 1965, ACTA ARITH, V10, P183, DOI DOI 10.4064/AA-10-2-183-213
[6]  
KUIPERS L, 1974, UNIFORM DISTRIBUTION
[7]  
ROBBINS H, 1973, P AM MATH SOC, V4, P786
[8]   ON THE ASYMPTOTIC UNIFORM-DISTRIBUTION OF SUMS REDUCED MOD-1 [J].
SCHATTE, P .
MATHEMATISCHE NACHRICHTEN, 1984, 115 :275-281
[9]  
SCHATTE P, COMMUNICATION
[10]  
SCHATTE P, 1988, PROBAB THEORY REL, V4, P167