Stabilization arising from PGEM: A review and further developments

被引:15
作者
Araya, Rodolfo [1 ]
Barrenechea, Gabriel R. [1 ]
Franca, Leopoldo P. [2 ]
Valentin, Frederic [3 ]
机构
[1] Univ Concepcion, Dept Ingn Matemat, Concepcion, Chile
[2] Univ Colorado, Dept Math, Denver, CO 80217 USA
[3] Lab Nacl Comp Cient, Dept Matemat Aplicada, BR-25651070 Petropolis, RJ, Brazil
基金
美国国家科学基金会;
关键词
Stokes operator; Reactive flow; Multiscale function; Petrov-Galerkin method; Stabilization; FINITE-ELEMENT METHODS; COMPUTATIONAL FLUID-DYNAMICS; PETROV-GALERKIN FORMULATIONS; STOKES PROBLEM; MULTISCALE ENRICHMENT; BUBBLES; APPROXIMATION;
D O I
10.1016/j.apnum.2008.12.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is twofold. First, we review the recent Petrov-Galerkin enriched method (PGEM) to stabilize numerical solutions of BVP's in primal and mixed forms. Then, we extend such enrichment technique to a mixed singularly perturbed problem, namely, the generalized Stokes problem, and focus on a stabilized finite element method arising in a natural way after performing static condensation. The resulting stabilized method is shown to lead to optimal convergences, and afterward, it is numerically validated. (C) 2008 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:2065 / 2081
页数:17
相关论文
共 35 条
[21]   ERROR ANALYSIS OF SOME GALERKIN LEAST-SQUARES METHODS FOR THE ELASTICITY EQUATIONS [J].
FRANCA, LP ;
STENBERG, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (06) :1680-1697
[22]   Multiscale and residual-free bubble functions for reaction-advection-diffusion problems [J].
Franca, LP ;
Ramalho, JVA ;
Valentin, F .
INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2005, 3 (03) :297-312
[23]   Convergence analysis of a multiscale finite element method for singularly perturbed problems [J].
Franca, LP ;
Madureira, AL ;
Tobiska, L ;
Valentin, F .
MULTISCALE MODELING & SIMULATION, 2005, 4 (03) :839-866
[24]   Towards multiscale functions: enriching finite element spaces with local but not bubble-like functions [J].
Franca, LP ;
Madureira, AL ;
Valentin, F .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (27-29) :3006-3021
[25]   STABILIZED FINITE-ELEMENT METHODS .1. APPLICATION TO THE ADVECTIVE-DIFFUSIVE MODEL [J].
FRANCA, LP ;
FREY, SL ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 95 (02) :253-276
[26]  
FRANCA LP, 1996, E W J APPL MATH, V4, P265
[27]  
Girault V., 2012, Finite Element Methods for NavierStokes Equations: Theory and Algorithms
[29]   A NEW FINITE-ELEMENT FORMULATION FOR COMPUTATIONAL FLUID-DYNAMICS .5. CIRCUMVENTING THE BABUSKA-BREZZI CONDITION - A STABLE PETROV-GALERKIN FORMULATION OF THE STOKES PROBLEM ACCOMMODATING EQUAL-ORDER INTERPOLATIONS [J].
HUGHES, TJR ;
FRANCA, LP ;
BALESTRA, M .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1986, 59 (01) :85-99
[30]  
LINB T, 2001, NUMER MATH, V87, P457