Stochastic differential delay equations with Markovian switching

被引:196
作者
Mao, XR [1 ]
Matasov, A
Piunovskiy, AB
机构
[1] Univ Strathclyde, Dept Stat & Modelling Sci, Glasgow G1 1XH, Lanark, Scotland
[2] Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow, Russia
[3] Moscow State Inst Phys & Technol, Moscow 125206, Russia
关键词
Brownian motion; delay equation; generalized Ito's formula; Lyapunov exponent; Markov chain;
D O I
10.2307/3318634
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we discuss stochastic differential delay equations with Markovian switching. These can be regarded as the result of several stochastic differential delay equations switching among each other according to the movement of a Markov chain. One of the main aims of this paper is to investigate the exponential stability of the equations.
引用
收藏
页码:73 / 90
页数:18
相关论文
共 14 条
[1]  
Arnold L., 1972, STOCHASTIC DIFFERENT
[2]   Stability of a random diffusion with linear drift [J].
Basak, GK ;
Bisi, A ;
Ghosh, MK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 202 (02) :604-622
[3]  
Berman A., 1994, CLASSICS APPL MATH, DOI [10.1016/C2013-0-10361-3, 10.1137/1.9781611971262, DOI 10.1137/1.9781611971262]
[4]   OPTIMAL-CONTROL OF SWITCHING DIFFUSIONS WITH APPLICATION TO FLEXIBLE MANUFACTURING SYSTEMS [J].
GHOSH, MK ;
ARAPOSTATHIS, A ;
MARCUS, SI .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (05) :1183-1204
[5]  
Hasminskii R., 1981, STOCHASTIC STABILITY
[6]  
Karatzas I, 2014, Brownian Motion and Stochastics Calculus, V113
[7]  
Kolmanovskii V., 1992, APPL THEORY FUNCTION
[8]  
Kolmanovskii V. B., 1986, MATH SCI ENG, V180
[9]  
Ladde G. S., 1980, Random Differential Inequalities
[10]  
Mao X., 1997, Stochastic Differential Equations and Applications, V2