Evaluation of Fog and Low Stratus Cloud Microphysical Properties Derived from In Situ Sensor, Cloud Radar and SYRSOC Algorithm

被引:12
作者
Dupont, Jean-Charles [1 ]
Haeffelin, Martial [2 ]
Waersted, Eivind [3 ]
Delanoe, Julien [4 ]
Renard, Jean-Baptiste [5 ]
Preissler, Jana [6 ]
O'Dowd, Colin [6 ]
机构
[1] Univ Paris Saclay, Inst Pierre Simon Laplace, Ecole Polytech, UVSQ, F-91128 Palaiseau, France
[2] Univ Paris Saclay, CNRS, Inst Pierre Simon Laplace, Ecole Polytech, F-91128 Palaiseau, France
[3] Univ Paris Saclay, Lab Meteorol Dynam, Ecole Polytech, F-91128 Palaiseau, France
[4] UPMC, CNRS, UVSQ, Lab Atmospheres,Milieux,Observat Spatiales, F-78280 Guyancourt, France
[5] Univ Orleans, CNRS, LPC2E, 3A Ave Rech Sci, F-45071 Orleans, France
[6] Natl Univ Ireland, Ctr Climate & Air Pollut Studie, Galway H91 CF50, Ireland
基金
欧盟地平线“2020”;
关键词
fog; cloud radar; microphysical properties; AEROSOL OPTICAL COUNTER/SIZER; LIQUID WATER; ATMOSPHERIC PARTICLES; BALLOON MEASUREMENTS; SIZE DISTRIBUTION; RADIATION FOG; REFLECTIVITY; RETRIEVAL; IMPACT; MODEL;
D O I
10.3390/atmos9050169
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The microphysical properties of low stratus and fog are analyzed here based on simultaneous measurement of an in situ sensor installed on board a tethered balloon and active remote-sensing instruments deployed at the Instrumented Site for Atmospheric Remote Sensing Research (SIRTA) observatory (south of Paris, France). The study focuses on the analysis of 3 case studies where the tethered balloon is deployed for several hours in order to derive the relationship between liquid water content (LWC), effective radius (Re) and cloud droplet number concentration (CDNC) measured by a light optical aerosol counter (LOAC) in situ granulometer and Bistatic Radar System for Atmospheric Studies (BASTA) cloud radar reflectivity. The well-known relationship Z = x (LWC) has been optimized with E [0.02, 0.097] and E [1.91, 2.51]. Similar analysis is done to optimize the relationship Re = f(Z) and CDNC = f(Z). Two methodologies have been applied to normalize the particle-size distribution measured by the LOAC granulometer with a visible extinction closure (R-2 E [0.73, 0.93]) and to validate the LWC profile with a liquid water closure using the Humidity and Temperature Profiler (HATPRO) microwave radiometer (R-2 E [0.83, 0.91]). In a second step, these relationships are used to derive spatial and temporal variability of the vertical profile of LWC, Re and CDNC starting from BASTA measurement. Finally, the synergistic remote sensing of clouds (SYRSOC) algorithm has been tested on three tethered balloon flights. Generally, SYRSOC CDNC and Re profiles agreed well with LOAC in situ and BASTA profiles for the studied fog layers. A systematic overestimation of LWC by SYRSOC in the top half of the fog layer was found due to fog processes that are not accounted for in the cloud algorithm SYRSOC.
引用
收藏
页数:19
相关论文
共 34 条
[1]   Intercomparison of single-column numerical models for the prediction of radiation fog [J].
Bergot, Thierry ;
Terradellas, Enric ;
Cuxart, Joan ;
Mira, Antoni ;
Liechti, Olivier ;
Mueller, Mathias ;
Nielsen, Niels Woetmann .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2007, 46 (04) :504-521
[2]   BASTA: A 95-GHz FMCW Doppler Radar for Cloud and Fog Studies [J].
Delanoe, Julien ;
Protat, Alain ;
Vinson, Jean-Paul ;
Brett, Williams ;
Caudoux, Christophe ;
Bertrand, Fabrice ;
du Chatelet, Jacques Parent ;
Hallali, Ruben ;
Barthes, Laurent ;
Haeffelin, Martial ;
Dupont, Jean-Charles .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2016, 33 (05) :1023-1038
[3]   Cloud effective particle size and water content profile retrievals using combined lidar and radar observations - 1. Theory and examples [J].
Donovan, DP ;
van Lammeren, ACAP .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D21) :27425-27448
[4]   Analysis of Dynamical and Thermal Processes Driving Fog and Quasi-Fog Life Cycles Using the 2010-2013 ParisFog Dataset [J].
Dupont, J. C. ;
Haeffelin, M. ;
Stolaki, S. ;
Elias, T. .
PURE AND APPLIED GEOPHYSICS, 2016, 173 (04) :1337-1358
[5]   Stratus-Fog Formation and Dissipation: A 6-Day Case Study [J].
Dupont, Jean-Charles ;
Haeffelin, Martial ;
Protat, Alain ;
Bouniol, Dominique ;
Boyouk, Neda ;
Morille, Yohann .
BOUNDARY-LAYER METEOROLOGY, 2012, 143 (01) :207-225
[6]   Particulate contribution to extinction of visible radiation: Pollution, haze, and fog [J].
Elias, Thierry ;
Haeffelin, Martial ;
Drobinski, Philippe ;
Gomes, Laurent ;
Rangognio, Jerome ;
Bergot, Thierry ;
Chazette, Patrick ;
Raut, Jean-Christophe ;
Colomb, Michele .
ATMOSPHERIC RESEARCH, 2009, 92 (04) :443-454
[7]  
Fox NI, 1997, J APPL METEOROL, V36, P485, DOI 10.1175/1520-0450(1997)036<0485:TROSCP>2.0.CO
[8]  
2
[9]   A GENERAL EQUATION FOR AEROSOL ASPIRATION BY THIN-WALLED SAMPLING PROBES IN CALM AND MOVING AIR [J].
GRINSHPUN, S ;
WILLEKE, K ;
KALATOOR, S .
ATMOSPHERIC ENVIRONMENT PART A-GENERAL TOPICS, 1993, 27 (09) :1459-1470
[10]   Fog research:: A review of past achievements and future perspectives [J].
Gultepe, I. ;
Tardif, R. ;
Michaelides, S. C. ;
Cermak, J. ;
Bott, A. ;
Bendix, J. ;
Mueller, M. D. ;
Pagowski, M. ;
Hansen, B. ;
Ellrod, G. ;
Jacobs, W. ;
Toth, G. ;
Cober, S. G. .
PURE AND APPLIED GEOPHYSICS, 2007, 164 (6-7) :1121-1159