Restrained domination in trees

被引:43
作者
Domke, GS
Hattingh, JH
Henning, MA
Markus, LR
机构
[1] Georgia State Univ, Dept Math & Comp Sci, Atlanta, GA 30303 USA
[2] Univ Natal, Dept Math & Appl Math, ZA-3209 Pietermaritzburg, South Africa
[3] Furman Univ, Dept Math, Greenville, SC 29613 USA
关键词
D O I
10.1016/S0012-365X(99)00036-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V,E) be a graph. A set S subset of or equal to V is a restrained dominating set if every vertex not in S is adjacent to a vertex in S and to a vertex in V - S. The restrained domination number of G, denoted by gamma(r)(G), is the smallest cardinality of a restrained dominating set of G. We show that if T is a tree of order n, then gamma(r)(T) greater than or equal to [(n + 2)/3]. Moreover, we constructively characterize the extremal trees T of order n achieving this lower bound. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 8 条
[1]  
[Anonymous], 1997, DOMINATION GRAPHS AD
[2]  
CHATRAND G, 1996, GRAPHS DIGRAPHS
[3]   Restrained domination in graphs [J].
Domke, GS ;
Hattingh, JH ;
Hedetniemi, ST ;
Laskar, RC ;
Markus, LR .
DISCRETE MATHEMATICS, 1999, 203 (1-3) :61-69
[4]  
DOMKE GS, UNPUB RESTRAINED DOM
[5]  
DOMKE GS, UNPUB CONSTRUCTIVE C
[6]  
Haynes T.W., 1997, FUNDAMENTALS DOMINAT
[7]  
Henning MA, 1999, DISCRETE MATH, V197, P415
[8]   For vertex partitioning problems on partial k-trees [J].
Telle, JA ;
Proskurowski, A .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1997, 10 (04) :529-550