Quantum Otto heat engine based on a multiferroic chain working substance

被引:62
作者
Azimi, M. [1 ,2 ]
Chotorlishvili, L. [1 ]
Mishra, S. K. [1 ,3 ]
Vekua, T. [4 ]
Huebner, W. [5 ,6 ]
Berakdar, J. [1 ]
机构
[1] Univ Halle Wittenberg, Inst Phys, D-06099 Halle, Germany
[2] Max Planck Inst Microstruct Phys, D-06120 Halle, Germany
[3] Banaras Hindu Univ, Indian Inst Technol, Dept Phys, Varanasi 221005, Uttar Pradesh, India
[4] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
[5] Univ Kaiserslautern, Dept Phys, D-67653 Kaiserslautern, Germany
[6] Univ Kaiserslautern, Res Ctr OPTIMAS, D-67653 Kaiserslautern, Germany
关键词
quantum heat engine; quantum entanglement; frustrated spin chain; multiferroic system; POLARIZATION; COLLOQUIUM; PHYSICS; OXIDES;
D O I
10.1088/1367-2630/16/6/063018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a quantum Otto engine operating on the basis of a helical spin-1/2 multiferroic chain with strongly coupled magnetic and ferroelectric order parameters. The presence of a finite spin chirality in the working substance enables steering of the cycle by an external electric field that couples to the electric polarization. We observe a direct connection between the chirality, the entanglement and the efficiency of the engine. An electric-field dependent threshold temperature is identified, above which the pair correlations in the system, as quantified by the thermal entanglement, diminish. In contrast to the pair correlations, the collective many-body thermal entanglement is less sensitive to the electric field, and in the high temperature limit converges to a constant value. We also discuss the correlations between the threshold temperature of the pair entanglement, the spin chirality and the minimum of the fidelities in relation to the electric and magnetic fields. The efficiency of the quantum Otto cycle shows a saturation plateau with increasing electric field amplitude.
引用
收藏
页数:22
相关论文
共 76 条
[1]   Single-Ion Heat Engine at Maximum Power [J].
Abah, O. ;
Ronagel, J. ;
Jacob, G. ;
Deffner, S. ;
Schmidt-Kaler, F. ;
Singer, K. ;
Lutz, E. .
PHYSICAL REVIEW LETTERS, 2012, 109 (20)
[2]   Efficiency of heat engines coupled to nonequilibrium reservoirs [J].
Abah, Obinna ;
Lutz, Eric .
EPL, 2014, 106 (02)
[3]   Dynamics of entanglement in one-dimensional spin systems [J].
Amico, L ;
Osterloh, A ;
Plastina, F ;
Fazio, R ;
Massimo Palma, G .
PHYSICAL REVIEW A, 2004, 69 (02) :24
[4]   Helical multiferroics for electric field controlled quantum information processing [J].
Azimi, M. ;
Chotorlishvili, L. ;
Mishra, S. K. ;
Greschner, S. ;
Vekua, T. ;
Berakdar, J. .
PHYSICAL REVIEW B, 2014, 89 (02)
[5]   Electric polarization, toroidal moment, spin canting, and chirality induced by Dzialoshinsky-Moriya interactions in a V3 cluster analog of multiferroics [J].
Belinsky, Moisey I. .
PHYSICAL REVIEW B, 2011, 84 (06)
[6]   Multiferroics:: Towards a magnetoelectric memory [J].
Bibes, Manuel ;
Barthelemy, Agnes .
NATURE MATERIALS, 2008, 7 (06) :425-426
[7]   Quantum Simulators [J].
Buluta, Iulia ;
Nori, Franco .
SCIENCE, 2009, 326 (5949) :108-111
[8]   Quantum fluctuation relations for ensembles of wave functions [J].
Campisi, Michele .
NEW JOURNAL OF PHYSICS, 2013, 15
[9]   Employing circuit QED to measure non-equilibrium work fluctuations [J].
Campisi, Michele ;
Blattmann, Ralf ;
Kohler, Sigmund ;
Zueco, David ;
Haenggi, Peter .
NEW JOURNAL OF PHYSICS, 2013, 15
[10]   Colloquium: Quantum fluctuation relations: Foundations and applications [J].
Campisi, Michele ;
Haenggi, Peter ;
Talkner, Peter .
REVIEWS OF MODERN PHYSICS, 2011, 83 (03) :771-791