A robust trigonometrically fitted embedded pair for perturbed oscillators

被引:19
作者
Fang, Yonglei [2 ]
Song, Yongzhong [2 ]
Wu, Xinyuan [1 ,3 ]
机构
[1] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210093, Peoples R China
[2] Nanjing Normal Univ, Sch Math & Comp Sci, Nanjing 210097, Peoples R China
[3] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
美国国家科学基金会;
关键词
Trigonometrically fitted ARKN methods; Perturbed oscillators; Embedded pairs; EXPLICIT ARKN METHODS;
D O I
10.1016/j.cam.2008.07.053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new kind of trigonometrically fitted embedded pair of explicit ARKN methods for the numerical integration of perturbed oscillators is presented in this paper. This new pair is based on the trigonometrically fitted ARKN method of order five derived by Yang and Wu in [H.L.Yang, X.Y. Wu, Trigonometrically-fitted ARKN methods for perturbed oscillators, Appl. Numer. Math. 9 (2008) 1375-1395]. We analyze the stability properties, phase-lag (dispersion) and dissipation of the higher-order method of the new pair. Numerical experiments carried out show that our new embedded pair is very competitive in comparison with the embedded pairs proposed in the scientific literature. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:347 / 355
页数:9
相关论文
共 12 条
[2]   FAMILIES OF RUNGE-KUTTA-NYSTROM FORMULAS [J].
DORMAND, JR ;
ELMIKKAWY, MEA ;
PRINCE, PJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (02) :235-250
[3]   A trigonometrically fitted explicit Numerov-type method for second-order initial value problems with oscillating solutions [J].
Fang, Yonglei ;
Wu, Xinyuan .
APPLIED NUMERICAL MATHEMATICS, 2008, 58 (03) :341-351
[4]   A new pair of explicit ARKN methods for the numerical integration of general perturbed oscillators [J].
Fang, Yonglei ;
Wu, Xinyuan .
APPLIED NUMERICAL MATHEMATICS, 2007, 57 (02) :166-175
[5]   Stability of explicit ARKN methods for perturbed oscillators [J].
Franco, JM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 173 (02) :389-396
[6]   Exponentially fitted explicit Runge-Kutta-Nystrom methods [J].
Franco, JM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 167 (01) :1-19
[7]  
Gautschi W., 1961, Numer. Math., V3, P381, DOI DOI 10.1007/BF01386037
[8]  
Hairer E., 1993, Solving ordinary differential equations I, Corrected 3rd printing, Spring Series in Computational Mathematics, V1
[9]   CHEBYSHEVIAN MULTISTEP METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS [J].
LYCHE, T .
NUMERISCHE MATHEMATIK, 1972, 19 (01) :65-&
[10]   Embedded exponentially fitted Runge-Kutta-Nystrom method for the numerical solution of orbital problems [J].
Van de Vyver, Hans .
NEW ASTRONOMY, 2006, 11 (08) :577-587