Solitary wave solution of higher-order Korteweg-de Vries equation

被引:17
作者
Sarma, Jnanjyoti [1 ]
机构
[1] RG Baruah Coll, Dept Mat & Comp Sci, Ambari Fatasil 781025, Guwahati, India
关键词
GRAVITY;
D O I
10.1016/j.chaos.2007.01.112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An attempt has been made to obtain exact analytical traveling wave solution or simple wave solution of higher-order Korteweg de Vries (KdV) equation by using tanh-method or hyperbolic method. The higher-order equation call be derived for magnetized plasmas by using the reductive perturbation technique. It is found that the exact solitary wave Solution of higher-order KdV equation is obtained by tanh-method. Using this method, different kinds of nonlinear wave equations can be evaluated. The higher-order nolinearity and higher-order dispersive effect can be observed from the solutions of the equations. The method is applicable for other nonlinear wave equations. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:277 / 281
页数:5
相关论文
共 12 条
[1]  
Bhatnagar P.L., 1979, Nonlinear Waves in One-dimensional Dispersive Systems
[3]   Explosion of soliton in a multicomponent plasma [J].
Das, GC ;
Sarma, J ;
Uberoi, C .
PHYSICS OF PLASMAS, 1997, 4 (06) :2095-2100
[4]   Evolution of solitary waves in multicomponent plasmas [J].
Das, GC ;
Sarma, J .
CHAOS SOLITONS & FRACTALS, 1998, 9 (06) :901-911
[5]   TRAVELING WAVE SOLUTIONS FOR INHOMOGENEOUS ACOUSTIC GRAVITY-WAVES [J].
DAS, GC .
ACTA MECHANICA, 1979, 34 (3-4) :279-283
[6]   TRANSIENT-BEHAVIOR OF CYLINDRICAL SOLITONS IN MULTICOMPONENT PLASMA WITH NEGATIVE-IONS [J].
DAS, GC ;
SEN, KM .
CHAOS SOLITONS & FRACTALS, 1993, 3 (05) :551-562
[7]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[8]   EXISTENCE OF PERTURBED SOLITARY WAVE SOLUTIONS TO A MODEL EQUATION FOR WATER-WAVES [J].
HUNTER, JK ;
SCHEURLE, J .
PHYSICA D, 1988, 32 (02) :253-268
[9]  
Korteweg DJ., 1895, Philos. Mag, V39, P422, DOI [10.1080/14786449508620739, DOI 10.1080/14786449508620739]
[10]   Solitonic structures in KdV-based higher-order systems [J].
Salupere, A ;
Engelbrecht, J ;
Maugin, GA .
WAVE MOTION, 2001, 34 (01) :51-61