Approximating the inverse and the Moore-Penrose inverse of complex matrices

被引:2
作者
Cordero, Alicia [1 ]
Torregrosa, Juan R. [1 ]
Zafar, Fiza [1 ,2 ]
机构
[1] Univ Politecn Valencia, Inst Multidisciplinary Math, Camino Vera S-N, E-46022 Valencia, Spain
[2] Bahauddin Zakariya Univ, Ctr Adv Studies Pure & Appl Math, Multan, Pakistan
关键词
iterative method; Moore-Penrose inverse; Schulz-type method; singular value decomposition;
D O I
10.1002/mma.5879
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A parametric family of fourth-order schemes for computing the inverse and the Moore-Penrose inverse of a complex matrix is designed. A particular value of the parameter allows us to obtain a fifth-order method. Convergence analysis of the different methods is studied. Every iteration of the proposed schemes involves four matrix multiplications. A numerical comparison with other known methods, in terms of the average number of matrix multiplications and the mean of CPU time, is presented.
引用
收藏
页码:5920 / 5928
页数:9
相关论文
共 10 条
[1]  
[Anonymous], 2008, Functions of matrices
[2]  
Ben-Israel Adi, 2003, Generalized Inverses: Theory and Applications, V15
[3]   A note on Q-order of convergence [J].
Jay, LO .
BIT NUMERICAL MATHEMATICS, 2001, 41 (02) :422-429
[4]  
Krishnamurthy EV, 1986, NUMERICAL COMPUTATIO
[5]   Chebyshev-type methods and preconditioning techniques [J].
Li, Hou-Biao ;
Huang, Ting-Zhu ;
Zhang, Yong ;
Liu, Xing-Ping ;
Gu, Tong-Xiang .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (02) :260-270
[6]   A family of iterative methods for computing Moore-Penrose inverse of a matrix [J].
Li Weiguo ;
Li Juan ;
Qiao Tiantian .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (01) :47-56
[7]  
Schulz G, 1933, ANGEW MATH MECH, V13, P57
[8]   A Higher Order Iterative Method for Computing the Drazin Inverse [J].
Soleymani, F. ;
Stanimirovic, Predrag S. .
SCIENTIFIC WORLD JOURNAL, 2013,
[9]   Finding the Moore–Penrose inverse by a new matrix iteration [J].
Soleymani F. ;
Salmani H. ;
Rasouli M. .
Journal of Applied Mathematics and Computing, 2014, 47 (1-2) :33-48
[10]   An iterative method for computing the approximate inverse of a square matrix and the Moore-Penrose inverse of a non-square matrix [J].
Toutounian, F. ;
Soleymani, F. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 224 :671-680