Role of acoustic phonons in frequency dependent electronic thermal conductivity of graphene

被引:12
作者
Bhalla, Pankaj [1 ,2 ]
机构
[1] Phys Res Lab, Ahmadabad 380009, Gujarat, India
[2] Indian Inst Technol, Gandhinagar 382355, India
关键词
Electronic transport in graphene; Scattering mechanisms; Thermal conductivity; Phonon scattering; TRANSPORT;
D O I
10.1016/j.physleta.2017.01.006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the effect of the electron-phonon interaction on the finite frequency dependent electronic thermal conductivity of two dimensional graphene. We calculate it for various acoustic phonons present in graphene and characterized by different dispersion relations using the memory function approach. It is found that the electronic thermal conductivity k(e) (T) in the zero frequency limit follows different power law for the longitudinal/transverse and the flexural acoustic phonons. For the longitudinal/transverse phonons, k(e)(T) similar to T-1 at the low temperature and saturates at the high temperature. These signatures qualitatively agree with the results calculated by solving the Boltzmann equation analytically and numerically. Similarly, for the flexural phonons, we find that K-e(T) shows T-1/2 law at the low temperature and then saturates at the high temperature. In the finite frequency regime, we observe that the real part of the electronic thermal conductivity, Re[k(e)(omega,T)] follows omega(-2) behavior at the low frequency and becomes frequency independent at the high frequency. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:924 / 930
页数:7
相关论文
共 45 条
[1]   Properties of graphene: a theoretical perspective [J].
Abergel, D. S. L. ;
Apalkov, V. ;
Berashevich, J. ;
Ziegler, K. ;
Chakraborty, Tapash .
ADVANCES IN PHYSICS, 2010, 59 (04) :261-482
[2]   A self-consistent theory for graphene transport [J].
Adam, Shaffique ;
Hwang, E. H. ;
Galitski, V. M. ;
Das Sarma, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18392-18397
[3]   Boltzmann transport and residual conductivity in bilayer graphene [J].
Adam, Shaffique ;
Das Sarma, S. .
PHYSICAL REVIEW B, 2008, 77 (11)
[4]   Flexural mode of graphene on a substrate [J].
Amorim, Bruno ;
Guinea, Francisco .
PHYSICAL REVIEW B, 2013, 88 (11)
[5]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[6]   Theory of the dynamical thermal conductivity of metals [J].
Bhalla, Pankaj ;
Kumar, Pradeep ;
Das, Nabyendu ;
Singh, Navinder .
PHYSICAL REVIEW B, 2016, 94 (11)
[7]   Generalized Drude scattering rate from the memory function formalism: an independent verification of the Sharapov-Carbotte result [J].
Bhalla, Pankaj ;
Singh, Navinder .
EUROPEAN PHYSICAL JOURNAL B, 2016, 89 (02) :1-8
[8]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[9]  
Cooper Daniel R., 2012, ISRN Condensed Matter Physics, DOI 10.5402/2012/501686
[10]   Hot-electron relaxation in metals within the Gotze-Wolfle memory function formalism [J].
Das, Nabyendu ;
Singh, Navinder .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2016, 30 (11)