The number of equivalence classes of symmetric sign patterns

被引:2
作者
Cameron, Peter J.
Johnson, Charles R.
机构
[1] Univ London Queen Mary & Westfield Coll, Sch Math Sci, London E1 4NS, England
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
关键词
symmetric matrix; sign pattern; enumeration; duality;
D O I
10.1016/j.disc.2004.10.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper shows that the number of sign patterns of totally non-zero synunetric n-by-n matrices, up to conjugation by permutation and signature matrices and negation, is equal to the number of unlabelled graphs on n vertices. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:3074 / 3077
页数:4
相关论文
共 9 条
[1]  
ARMSTRONG K, 2003, COMMUTATIVITY SIGN P
[2]  
Cameron P.J., 1999, London Mathematical Society Student Texts, V45
[3]   CO-HOMOLOGICAL ASPECTS OF 2 GRAPHS [J].
CAMERON, PJ .
MATHEMATISCHE ZEITSCHRIFT, 1977, 157 (02) :101-119
[4]  
Eschenbach C.A., 1991, Linear Multilinear Algebra, V29, P299
[5]  
Johnson C.R., 1998, LINEAR MULTILINEAR A, V44, P287
[6]  
LISKOVEC VA, 1970, BSSR SER FIZ MAT NAV, P38
[7]   2-GRAPHS, SWITCHING CLASSES AND EULER GRAPHS ARE EQUAL IN NUMBER [J].
MALLOWS, CL ;
SLOANE, NJA .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1975, 28 (04) :876-880
[8]  
ROBINSON R. W., 1969, PROOF TECHNIQUES GRA, P147
[9]  
SEIDEL JJ, 1967, INDAG MATH, V29, P188, DOI DOI 10.1016/S1385-7258(67)50031-8