Bifurcations of equilibria in non-smooth continuous systems

被引:91
作者
Leine, R. I. [1 ]
机构
[1] ETH, Ctr Mech, IMES, CH-8092 Zurich, Switzerland
关键词
non-smooth systems; non-smooth vector fields; piecewise linear non-smooth continuous systems; Hopf bifurcation;
D O I
10.1016/j.physd.2006.08.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to show a variety of bifurcation phenomena of equilibria that can be observed in non-smooth continuous systems. In non-smooth systems so-called 'multiple crossing bifurcations' can occur, for which the eigenvalues jump more than once over the imaginary axis, and which do not have a classical bifurcation as counterpart. Novel theoretical results are given for a class of planar systems but no general theory is available for the multi-dimensional case. A number of well chosen examples of multiple crossing bifurcations are discussed in detail. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:121 / 137
页数:17
相关论文
共 18 条
[1]  
[Anonymous], J APPL MATH MECH
[2]  
Clarke F.H., 1998, GRAD TEXT M, V178
[3]  
Curnier A, 2000, CISM COUR L, P1
[4]   Local analysis of C-bifurcations in n-dimensional piecewise-smooth dynamical systems [J].
Di Bernardo, M ;
Feigin, MI ;
Hogan, SJ ;
Homer, ME .
CHAOS SOLITONS & FRACTALS, 1999, 10 (11) :1881-1908
[5]   Bifurcations in piecewise-smooth feedback systems [J].
Di Bernardo, M ;
Garofalo, F ;
Iannelli, L ;
Vasca, F .
INTERNATIONAL JOURNAL OF CONTROL, 2002, 75 (16-17) :1243-1259
[6]   Bifurcations in DC-DC switching converters:: Review of methods and applications [J].
EL Aroudi, A ;
Debbat, M ;
Giral, R ;
Olivar, G ;
Benadero, L ;
Toribio, E .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (05) :1549-1578
[7]  
Feigin MI, 1995, PMM-J APPL MATH MEC+, V59, P853, DOI 10.1016/0021-8928(95)00118-2
[8]  
FEIGIN MI, 1974, PRIKL MAT MEKH, V38, P810
[9]  
Guckenheimer J., 1983, NONLINEAR OSCILLATIO
[10]  
Kuznetsov Y., 1998, ELEMENTS APPL BIFURC