A fractional order Hardy inequality

被引:104
作者
Dyda, B [1 ]
机构
[1] Wroclaw Univ Technol, PL-50370 Wroclaw, Poland
关键词
D O I
10.1215/ijm/1258138400
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the following integral inequality: integral(D) \u(x)\(P)/dist(x, D-c)(alpha) dx less than or equal to c integral(D)integral(D) \u(x)-u(y)\(p)/\x-y\(d+x) dxdy, uis an element ofCc(D), where alpha, p> 0 and D subset of R-d is a Lipschitz domain or its complement or a complement of a point.
引用
收藏
页码:575 / 588
页数:14
相关论文
共 20 条
[1]   ON STRONG BARRIERS AND AN INEQUALITY OF HARDY FOR DOMAINS IN RN [J].
ANCONA, A .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1986, 34 :274-290
[2]  
[Anonymous], 2002, USPEKHI MAT NAUK, DOI DOI 10.4213/rm533
[3]  
BLUMENTHAL RM, PURE APPL MATH, V29, DOI UNSP MR419348
[4]  
BODGAN K, 2003, PROBAB THEORY REL, V127, P89, DOI UNSP MR2006232
[5]  
BODGAN K, COMMUNICATION
[6]   Hardy inequality for censored stable processes [J].
Chen, ZQ ;
Song, RM .
TOHOKU MATHEMATICAL JOURNAL, 2003, 55 (03) :439-450
[7]   Green function estimate for censored stable processes [J].
Chen, ZQ ;
Kim, P .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 124 (04) :595-610
[8]   Some second-order integral inequalities of generalized Hardy type [J].
Florkiewicz, B ;
Wojteczek, K .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :947-958
[9]  
FLORKIEWICZ B, 1980, C MATH, V43, P321
[10]  
FUKUSAKO S, 1994, ANN GLACIOL, V19, P126, DOI 10.3189/1994AoG19-1-126-130