High-Q/V Photonic Crystal Cavities and QED Analysis in 3C-SiC

被引:17
作者
Chatzopoulos, Ioannis [1 ]
Martini, Francesco [1 ,2 ]
Cernansky, Robert [1 ]
Politi, Alberto [1 ]
机构
[1] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England
[2] CNR, IFN, Via Cineto Romano 42, I-00156 Rome, Italy
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
nanophotonics; silicon carbide; light-matter interaction; photonic crystal; Purcell factor; cavity QED; SILICON-CARBIDE; COHERENT CONTROL; SPINS; FABRICATION; NANOCAVITY;
D O I
10.1021/acsphotonics.8b01671
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Solid state quantum emitters are among the most promising candidates for single photon generation in quantum technologies. However, they suffer from decoherence effects that limit their efficiency and indistinguishability. For instance, the radiation emitted in the zero phonon line (ZPL) of most color centers is on the order of a few percent (e.g., NV- centers in diamond, VSiVC in SiC), limiting the emission rate of single photons as well as the efficiency. At the same time, reliable interfacing with photons in an integrated manner still remains a challenge in both diamond and SiC technology. Here we develop photonic crystal cavities with Q factors in the order of 7100 in 3C SiC. We discuss how this high confinement cavity can significantly enhance the fraction of photons emitted in the ZPL and improve their characteristics. We study the requirements to place SiC color centers in the strong coupling condition and analyze the maximum attainable enhancement in the weak coupling regime. The robustness of the increased efficiency and improved indistinguishability can open the way to quantum technologies in the solid state.
引用
收藏
页码:1826 / 1831
页数:11
相关论文
共 47 条
[1]  
Aharonovich I, 2016, NAT PHOTONICS, V10, P631, DOI [10.1038/nphoton.2016.186, 10.1038/NPHOTON.2016.186]
[2]   Fine-tuned high-Q photonic-crystal nanocavity [J].
Akahane, Y ;
Asano, T ;
Song, BS ;
Noda, S .
OPTICS EXPRESS, 2005, 13 (04) :1202-1214
[3]   High-Q photonic nanocavity in a two-dimensional photonic crystal [J].
Akahane, Y ;
Asano, T ;
Song, BS ;
Noda, S .
NATURE, 2003, 425 (6961) :944-947
[4]   First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres [J].
Alkauskas, Audrius ;
Buckley, Bob B. ;
Awschalom, David D. ;
Van de Walle, Chris G. .
NEW JOURNAL OF PHYSICS, 2014, 16
[5]   Strong-coupling regime for quantum boxes in pillar microcavities:: Theory [J].
Andreani, LC ;
Panzarini, G ;
Gérard, JM .
PHYSICAL REVIEW B, 1999, 60 (19) :13276-13279
[6]  
Balasubramanian G, 2009, NAT MATER, V8, P383, DOI [10.1038/nmat2420, 10.1038/NMAT2420]
[7]   Optimization of a buffer layer for cubic silicon carbide growth on silicon substrates [J].
Bosi, Matteo ;
Attolini, Giovanni ;
Negri, Marco ;
Frigeri, Cesare ;
Buffagni, Elisa ;
Ferrari, Claudio ;
Rimoldi, Tiziano ;
Cristofolini, Luigi ;
Aversa, Lucrezia ;
Tatti, Roberta ;
Verucchi, Roberto .
JOURNAL OF CRYSTAL GROWTH, 2013, 383 :84-94
[8]   Selective Purcell enhancement of two closely linked zero-phonon transitions of a silicon carbide color center [J].
Bracher, David O. ;
Zhang, Xingyu ;
Hu, Evelyn L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (16) :4060-4065
[9]   Fabrication of High-Q Nanobeam Photonic Crystals in Epitaxially Grown 4H-SiC [J].
Bracher, David O. ;
Hu, Evelyn L. .
NANO LETTERS, 2015, 15 (09) :6202-6207
[10]   High quality-factor optical nanocavities in bulk single-crystal diamond [J].
Burek, Michael J. ;
Chu, Yiwen ;
Liddy, Madelaine S. Z. ;
Patel, Parth ;
Rochman, Jake ;
Meesala, Srujan ;
Hong, Wooyoung ;
Quan, Qimin ;
Lukin, Mikhail D. ;
Loncar, Marko .
NATURE COMMUNICATIONS, 2014, 5