Boundedness of commutators on Hardy type spaces

被引:55
作者
Lu, SZ [1 ]
Wu, Q [1 ]
Yang, DC [1 ]
机构
[1] Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2002年 / 45卷 / 08期
基金
中国国家自然科学基金;
关键词
singular integral; commutator; Lipschitz space; Hardy space; Lebesgue space; weak space; Herz space; atom; Riesz potential;
D O I
10.1007/BF02879981
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let [b, T] be the commutator of the function b is an element of Lip(beta) (R-n) (0 < beta less than or equal to 1) and the Calderon-Zygmund singular integral operator T. The authors study the boundedness properties of [b, T] on the classical Hardy spaces and the Herz-type Hardy spaces in non-extreme cases. For the boundedness of these commutators in extreme cases, some characterizations are also given. Moreover, the authors prove that these commutators are bounded from Hardy type spaces to the weak Lebesgue or Herz spaces in extreme cases.
引用
收藏
页码:984 / 997
页数:14
相关论文
共 12 条
[1]   A NOTE ON COMMUTATORS [J].
CHANILLO, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1982, 31 (01) :7-16
[2]  
Chen W. G., 2001, ADV MATH, V30, P63
[3]   FACTORIZATION THEOREMS FOR HARDY SPACES IN SEVERAL VARIABLES [J].
COIFMAN, RR ;
ROCHBERG, R ;
WEISS, G .
ANNALS OF MATHEMATICS, 1976, 103 (03) :611-635
[4]   Boundedness of commutators of fractional and singular integrals for the extreme values of p [J].
Harboure, E ;
Segovia, C ;
Torrea, JL .
ILLINOIS JOURNAL OF MATHEMATICS, 1997, 41 (04) :676-700
[5]  
HU GE, 1997, WEAK HERZ SPACES, V33, P27
[6]   MEAN OSCILLATION AND COMMUTATORS OF SINGULAR INTEGRAL-OPERATORS [J].
JANSON, S .
ARKIV FOR MATEMATIK, 1978, 16 (02) :263-270
[7]   Boundedness of some sublinear operators on Herz spaces [J].
Li, XW ;
Yang, DC .
ILLINOIS JOURNAL OF MATHEMATICS, 1996, 40 (03) :484-501
[8]  
Lu S.Z., 1995, 4 LECT REAL HP SPACE
[9]  
LU SZ, 1995, SCI CHINA SER A, V38, P662
[10]  
PALUSZYNSKI M, 1995, INDIANA U MATH J, V44, P1