Control of short-channel effects in InAlN/GaN high-electron mobility transistors using graded AlGaN buffer

被引:19
作者
Han, Tiecheng [1 ,2 ]
Zhao, Hongdong [1 ]
Peng, Xiaocan [1 ]
Li, Yuhai [2 ]
机构
[1] Hebei Univ Technol, Sch Elect & Informat Engn, Tianjin 300401, Peoples R China
[2] Natl Key Lab Optoelect Countermeasure Technol, Tianjin 300308, Peoples R China
关键词
InAlN/GaN; Graded AlGaN; HEMT; Back barrier; Short-channel effects; HEMTS; HFETS; GAN;
D O I
10.1016/j.spmi.2018.02.031
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A graded AlGaN buffer is designed to realize the p-type buffer by inducing polarization doping holes. Based on the two-dimensional device simulator, the effect of the graded AlGaN buffer on the direct-current (DC) and radio-frequency (RF) performance of short-gate InAlN/GaN high-electron mobility transistors (HEMTs) are investigated, theoretically. Compared to standard HEMT, an enhancement of electron confinement and a good control of short-channel effect (SCEs) are demonstrated in the graded AlGaN buffer HEMT. Accordingly, the pinched-off behavior and the ability of gate modulation are significantly improved. And, no serious SCEs are observed in the graded AlGaN buffer HEMT with an aspect ratio (L-G/t(ch)) of about 6.7, much lower than that of the standard HEMT (L-G/t(ch) = 13). In addition, for a 70-nm gate length, a peak current gain cutoff frequency (f(T)) of 171 GHz and power gain cutoff frequency (f(max)) of 191 GHz are obtained in the grade buffer HEMT, which are higher than those of the standard one with the same gate length. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:207 / 214
页数:8
相关论文
共 24 条
[1]   Electron transport characteristics of GaN for high temperature device modeling [J].
Albrecht, JD ;
Wang, RP ;
Ruden, PP ;
Farahmand, M ;
Brennan, KF .
JOURNAL OF APPLIED PHYSICS, 1998, 83 (09) :4777-4781
[2]   Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures [J].
Ambacher, O ;
Majewski, J ;
Miskys, C ;
Link, A ;
Hermann, M ;
Eickhoff, M ;
Stutzmann, M ;
Bernardini, F ;
Fiorentini, V ;
Tilak, V ;
Schaff, B ;
Eastman, LF .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (13) :3399-3434
[3]   Determination of Surface Donor States Properties and Modeling of InAlN/AlN/GaN Heterostructures [J].
Goyal, Nitin ;
Fjeldly, Tor A. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (02) :881-885
[4]   Simulation study of InAlN/GaN high-electron mobility transistor with AlInN back barrier [J].
Han, Tie-Cheng ;
Zhao, Hong-Dong ;
Yang, Lei ;
Wang, Yang .
CHINESE PHYSICS B, 2017, 26 (10)
[5]   70-nm-gated InAlN/GaN HEMTs grown on SiC substrate with f(T)/f(max) > 160 GHz [J].
Han Tingting ;
Dun Shaobo ;
Lu Yuanjie ;
Gu Guodong ;
Song Xubo ;
Wang Yuangang ;
Xu Peng ;
Feng Zhihong .
JOURNAL OF SEMICONDUCTORS, 2016, 37 (02)
[6]   Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors [J].
Ibbetson, JP ;
Fini, PT ;
Ness, KD ;
DenBaars, SP ;
Speck, JS ;
Mishra, UK .
APPLIED PHYSICS LETTERS, 2000, 77 (02) :250-252
[7]   Polarization engineering on buffer layer in GaN-based heterojunction FETs [J].
Inoue, Takashi ;
Nakayama, Tatsuo ;
Ando, Yuji ;
Kosaki, Masayoshi ;
Miwa, Hiroshi ;
Hirata, Koji ;
Uemura, Toshiya ;
Miyamoto, Hironobu .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2008, 55 (02) :483-488
[8]   Short-channel effect limitations on high-frequency operation of AlGaN/GaN HEMTs for T-Gate devices [J].
Jessen, Gregg H. ;
Fitch, Robert C., Jr. ;
Gillespie, James K. ;
Via, Glen ;
Crespo, Antonio ;
Langley, Derrick ;
Denninghoff, Daniel J. ;
Trejo, Manuel, Jr. ;
Heller, Eric R. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (10) :2589-2597
[9]   245-GHz InAlN/GaN HEMTs With Oxygen Plasma Treatment [J].
Lee, Dong Seup ;
Chung, Jinwook W. ;
Wang, Han ;
Gao, Xiang ;
Guo, Shiping ;
Fay, Patrick ;
Palacios, Tomas .
IEEE ELECTRON DEVICE LETTERS, 2011, 32 (06) :755-757
[10]   InAlN/GaN HEMTs With AlGaN Back Barriers [J].
Lee, Dong Seup ;
Gao, Xiang ;
Guo, Shiping ;
Palacios, Tomas .
IEEE ELECTRON DEVICE LETTERS, 2011, 32 (05) :617-619